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This paper discusses components of a research project where several types of incompatible spatial data 
uncertliinties aremodelledandpropagated through acomplex GIS"basedanalyticalroutine [10J. The procedure 
utilizes two modelling methods: fuzzy logic for spatial uncertainty data, and Monte Carlo simulation forspatiall 
non-spatial variance information, The paper reports on uncertainty tracking, commencing with the transition 
of the spatia1 data from source paper maps and field reports, through analysis and modelling, 'to cartographic 
output required to visualize the uncertainty dimensions. As holds true for traditional cartography. the 
presentation of information about uncertainty is leey to Utility. The research [10] and the presentation utilize a 
variety of proven choropleth techniques in concert with animation capabilities of modern workstations to 
summarize the uncertainty modeUed. This paper focuses on the visualization problem; however. the results 
cantiot be fully presented due to the limitations of a static, monochrome medium. 

This paper concludes by arguing that we should abandon some of our traditional techniqueS of datastorage and 
presentation by moving to data structures and visualization tools that reflect a more accurate version of inherent 
and introduced uncertainties in cartogrnphic data. 

1 Introduction 

GeographiclnformationSystems(GIS)increasing!ycanbefoundonthedesksofpublicutilityplanners,natural 
resource scientists, and almost anyone else concerned with spatia1ly referenced data. PerlJaps the best 
applications 10 date have been with the former, for utility management focuses on straight lines and 
unambiguous locations. Detailed coordinates and precise analytical and modelling routines supported by GIS 
catertoa utility manager's desire to see the world in black-and-white. Unfortunately, the same black-and-white 
routines and data structures are also applied in the natural resource sector, where entities in question might he 
better represented by shades of gray. 

This dichotomy in natural resource applications between imprecise reality andits preclSedigilalrepresentation 
has given rise to a rapidly growing research area in which spatial data experts grapple with the implications of 
uncertainty and error analysis. As this field has developed, researchers have fanned out across a broad front: 
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advancingerroranalysis (e.g., [8,9D,locationalandfeature uncertainty analysis[6j,errorpropagation methods 
[18]. the visualization of uncertainty [3], and numerollS others. 

One particularly difficult problem in this field involves addressing the various types of error that exist. 
Positional error can be represented by an error ellipse (20) or sphere (3D). However, thematic variables can 
have many other uncertainty aspects, including: 

• uncertainty regarding classification; 
• uncertainty regarding classification divisions; 
• inherent uncertainty (regarding the resource itself and data gathering techniques); 
• model uncertainly (when combining thematic variables); 
• uncertainly tha.t varies spatially (e.g. between polygons); and 
• error 'envelopes' around non-classified items (e.g. elevation). 

When spatial data are combined in a GIS, a common data format is required. Dealing with many types of 
uncertainty and error will also require some type of common denominator. All of the above. with the exception 
of the final item, can be manipulated in a common format using fuzzy set theory (e.g. [5, 20, 23]). The partial 
memberships allowed in fuzzy set theory are particularly well-suited to representing uncertainly in resource 
data. For example, a fuzzy index of 0.75 at a particular (x,y) location may iudicace that the data gathering 
techniques do not allow absoluce certainty regarding the forest type; or, alternately. that the forest at that site 
demonstrates most of the characteristics of "mature forest" but some of "immature forest". 

However, numerical estimates of error (e.g. elevation,. 225m±5m) cannot be incorporated into a fuzzy-based 
system. In concept they differ substantially from uncertainty information. Tbis difference demands that errors 
and uncertainties receive separate processing in an integrated analysis. 

The research reported in this paper utilizes the concept of spatially variable uncertainty in the form of "fuzzy 
slllfaces" to model the uncertainties in a GIS-based analysis of slope stability. Error elements in the analysis 
are modelled separately using Monte Carlo simulation. Data from a forested coastal site are lltilized to cest the 
uncertainty/error modelling routine. The primary focus of the paper is on the visll3lization methods required 
to bring together these uncertainties anderrors. This visualization is an atcempt to effectively communicace the 
model's results and their actlla! utility in light of built-in uncertainty and error. 

One important issue raised in this work is the need tp address the SPatial variability in the uncertainty model. 
The wide variety of potential errors and uncertainties involved with almost any natural resource data set 
precludes the use of simple UOIrspatiaI meta-data. The recognition of the need for meta-data found in recent 
initiatives such as the U.S. Spatial Data TflUlsfer Standard shonId be lauded. However, methods such as these 
thatsimply append ameta.-data index to eachexistiug polygon (or 10 each map sheet)ignore thepotentialspatial 
Variability of uncertainty. In the context of both exploratory spatial data analysis (ESDA) and spatial decision 
support syscems (SDSS), the concept of homogenous objects (i.e. standard polygons) with homogenous 
attributes is increasingly difficult to defend. Intelligent manipulation at a variety of scales requires knowledge 
regarding the complex spatially-variable interactions between these objects. Some, such as c1ear-cutlforest 
boundaries, have liUle added uncertainty. Others, such as soil polygons, may have complex, multi-leveled 
intetaCtiOll- increasing uncertainty significantly in SpecifIC areas. Due to this high degree of complexity. the 
model presented here will utilize a surficial, tather than object-oriented structure 10 address this key element 
of uncertainty. 
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2 Techniques 

A slope stability scenario was chosen to demonstrate this spatially-variable errorl1mcertainty model. This 
highly typical type of analysis utilizes data from a variety of sources, each of which demonstrates one or more 
of the uncertainties listed above. Slope stability analysis depends significantly upon soil data-typically stored 
as polygons. Deriving the uncertainties while converting such polygons to uncertainty surfaces will serve to 
demonstrate techniques of manipulating spatially-variable uncertainty. The wide variety of uncertainty data 
will also allow the exploration of a diverse set of visualization techniques. 

The infinite slope stability model is utilized to calculate a factor Qf safety for potential soil slippage. Predicting 
slope stability is particu1arly important oli Canada's West Coast, as seasonal peaks iii precipitation can often 
canse mass movement, iliflicting damage on buildings orroads located down-slope. The infinite slope stability 
model requires soil type, slope, and forest cover as source data. From these, values are derived for the model 
inputs of root depth, soil cohesion, slope, and several other minor items. The uncertainties and errors in these 
data sources may be clasSified as follows: 

1) uncertainty regarding soil or forest type classification (e.g., soil classed type A, might be B); 
2) uncertainty regarding. data gathering (e.g., 10% of polygons misclassified); 
3) spatial uncertainties (e.g., the uncertainty of item 1 increases near polygon boundaries); 
4) error envelopes around derived items (e.g., cohesion of soil type A = Y ±X); and 
5). error envelopes around elevation values. 

Infonnation regarding the first two uncertainties was gathered from discussions with soil scientists that had 
personal experience in the study area. Ideally, such inforrilation should come from the initilil surveyor a 
physical re-sampling of polygon boundaries. However, the Semantic Import Model [26] used to quantify this 
information is argued to act as a reasonable substitute. In the Semantic Import Model, pbrases such as 'clpse 
to' or 'nearly' are translated into fuzzy classifiers (see (5)). 

Information regarding the third item, spatial uncertainties, was also gathered from expert opinion via Semantic 
Import and was operationallzed using the following 'corridor of transition' algorithm. 

A central ridge is defined in each source polygon that is located as far from a boundary as possible withoutbeing 
closer to another boundary: a 'max-mili ridge'. The slope of the uncertainty values at the polygon/polygon 
interface is constrained by the two polygon types as well as the effective size of each polygon, deteimined from 
the shortest distance to a 'max-min ridge' . This 'corridoror transition' modelacts as arefinementoftheepsilon 
boundary model [4, 7, 25] as well as of Mark and CSilllig's t221 parametric function model. 

Upon completion of this algorithm. each of the possible soil classifications is assigned an 'unCertainty surface' 
which defines the likelihood of rmding that particular type at a given (x,y) location. A similar procedure is 
perfonned for the forest Coverage. 

The fourth and fifth items in the list, the error envelopes. were gathered from both literature reviews (in the case 
of soil attributes) and published error values (in the case of elevation data). Given that each of these errortenns 
are distributed nonnally (or in some cases log-normally) about the mean, a Monte Carlo simulation is utilized 
to detennine the output of the slope stability equation. Values are chosen randomly from within the error 
distribution and assigned to the equation. The randomization procedure is repeatedasufficientnumberoftilnes 
to determine the mean and standard deviation of the oUtputs Cm this case Sf) runs was chosen as a conservative 
figure; see [24] for a discussion). As a variety of soil and forest types are possible at any given location, the 
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en~ Monte Carlo procedure is repeated for every possible combination, excluding those bighly unlikely (e.g. 
bedrock with mature forest). 

The uDcenainties accompanying each surface are combined with a 'fuzzy AND', also known as a 'joint 
membership function' [6J; in this case a MIN function suffices to produce the output uncertainty surface. In 
the end, three surfaces are required to describe each combination of forest/soil possibilities: mean, standard 
deviation, and uncertainty. The large number of J:esulting surfaces serve to maintain makimum information 
content for the exploratory visualization to follow. 

3 CaseStudy 

An 8500 hectare study site was selected. The area is located on Louise Island, on the eastside of Moresby Island 
in the Queen Olarlotte Group, British Columbia, Canada, at 53°N, 132°E (see Figure 1). The area is a forest 
company test site, and was selected for: 1) the availability of data, and 2) the existence of prior slope stability 
studies for comparison. 

Several examples of the fuzzy surface resulting from the tranSition conidor algorithm applied to the case study 
data are illustrated in Figure 2. Note the asymmetric slopes on the boundary between two thematically similar, 
yet differently sized polygons in Figure 2a. Figure 2b details a bedrock/soil boundary. 

The 'non-spatial' items were gatbered from an extensive literature review undertaken by the US Forest Service 
lntermountain Research Station [17] wbile developing their slope stability modelling system. Soil types found 
in the Louise Island study site were matched with the classification system used by the USFS, and means and 
standard deviations of there levant data were calculated. The USFS study found that, forthemostpart, the values 
for each variable are normally distributed, with the exceptions of soil cohesion androotcohesion which are log­
normal. 

Elevation data consisting of a semi-regular grid of elevation spot heights (British Columbia TRIM data; [28]) 
produced from stereo-photogmmmetry were utilized. Block kriging was nsed to interpolate from these points 
toareguiargrid.Krigingwaschosenastheinterpolationmethodfortworeasons:itshighaccnracyandanability 
to produce variance maps of the derived values. The published error values were combined with the variance 
for each data point to produce a final variance value for each interpolated cell. 

The Monte Carlo randomization was repeated 50 times for each forest/soil combination, then summarized in 
threefinaisurfaces:mean,standarddeviationanduncertainty,describingalog-normalresultcurve.Afinaitally 
of 60 surfaces were produced by the procedure. 

4 Results 

The results of any new data manipulation procedure or model are typically assessed via comparisons with 
existing techniques, with a focns on the new model's accuracy in predicting phenomena Unfortunately, 
increased accuracy is precisely what the techniques of this study attempt to avoid; accurately representing real­
worldphenomenarequiresan~inuncertainty.Mostauthorsdealingwiththeuncertaintyissuehavealso 
facedthisconceptualroad-block.Althoughtbeydealwithitinavarietyofways,mostmaintainthatthemetbods 
they advocaIecreate maps arguably closer to ground truth than theorigina1 Boolean versions [6. 13,211. This 
argument is supported by us, with the stipulation that some method must be developed to compare the various 
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Figure 1: Louise Island Study Area Figure 2: Examples of the boundary 
model 

realizations of uncertainty that research in this area will generate. Fornow, an understanding of the results must 
focus on the visuali7.ation problem. 

TIle visunlizlItion of uncertainty inti.lmlntion is 11 substantial rcsclli'ch topic in the .geographicallitcmture. As 
every application of GIS software hns different requirements, so too must the Visualization question be 
approached on a hmad front. A gathering of specialists at a 1991 NeGIA conference on quality visualization 
[3] prodUced a telling discussion under the "research agenda" question. A major point of emphnsis was the 
importance ofinterilctive data exploration ns opposed to qualityrepresentationforhypothesis testing. Therange 
of disciplines represented led to numemus discrepant Views about the nature of an error model and hence the 
nature of summary displays. One of the only poi.DlS of agreement It'aS !be need to explore, compile examples, 
and underslaDd the nature qf the internal human mechanisms by whidl spatial or temporal JWtems are 
interpreted. 
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The major problem encountered in adding uncertainty information to a visual sununary is overload - users 
are not accustomed to dealing with variables that vary in value or certainty. Standard monocbrome two­
dimensional mapping techniques are not weU-suited to incorporating these added dimensions' in visual 
COIIIIDunication. Newer technologies offer several alternatives, such as: 

.' continuous spatial transition using colour or hue graduations; 
• time dependence - animating displays; 
• three dimensions - simulating 3-D objects; or 
• multi-media - using sound, images and text simultaneously [3]. 

The raster data structure and continuously variable surfaces in this study eliminate one other commonly stated 
solution: error graphs. Such a graph might be generated for a particular pixel being queried. However, in our 
case the entire image is of importance in a sununary display. 

Fisher [11] uses animation to display the variability in soil maps - the image shifts in real time to show where 
variability occurs. Otbersbave made use of sound [27] orother dynamic phenomena to display variability. 'Ibis 
study will primarily utilize map comparisons, using the assumption that more than four variables (X, Y :z and 
theme) in a 2-D display can be confusing for the viewer. Animation offers the opportunity of adding a fifth 
variable, as dues the inclusion of contoured information overlays. All of the above are utilized in the full study 
(see [10]) and appear in the presentation; only a limited monochrome subset appear in this discussion. 

4.1 Comparison with a Boolean Model 

Direct comparison with a Boolean model requires the fUZzy results to be flxed, or "de-fuzzed", with some 
particular threshold value. There are several methods available; however the most appropriate in this situation 
might be utilizing a uWdmum-likelibood index of all potential representation of each pixel. 

Amaximumlikeliboodmap utilizes the highest of the fuzzy joint-membership values and gathers the associated 
mean slope stability value. The resulting surface shows the most likely modelresults for every pixel on the map 
(Figure 3). This is the type of approach used by most nOll-spatial studies, including Burrough [5] and FISher 
[11, 12J. The differences between this typeofsummary and the Boolean modelareblgblightedin Figure 4. The 
maximum-likelihood (M-L) summary map generally displays safer results on slopes while considering the 
plaiDs more dangerous (probably due to minor variations in the DEM on the plain). However, since this type 
of summary ignores all variance inf~rmation, direct comparison with the Boolean model can be misleading. 
The M-L map gives. the appearance of "safer" than the Boolean version in areas of high variance. 

The key element of a slape stability study in a "working forest" is the identification of the potentially most 
unstable zones. An M-L map only focuses on the most likely stability values. However, such a map does not 
make use of some of the potential of the uncertainty model Any M-L map ignores the fact that there may be 
results, almost as likely, thatdescribemoredangerous conditions. For example, a particular pixel migbt receive 
a value of 1.0 at a certainty of 0.85 when utilizing soil type 3; however, a value of 0.2 (conSiderably more 
dangerous) at a certainty of 0.8 (slightly less likely) might appear with soil type4. 'lbisis one of the most lauded 
utilities of ~fuzzy analysis: the ability to retain information that almost, but not quite, fits into a specified class. 

The fuzzy overlay maps were examined for any values above a threshold (arbitrarily set at 0.6). If a particular 
cell bad mulliple realizations above this threshold, only the lowest factor of safety was retained. The resulting 
'worst-case sc:euario' map is displayed in Figure 5. The blank areas indicate certainty factors below the 0.6 
threshold (le., areas too ~ to trust the model's results). These results confum those reported b,y 
Goodchild et al. {lSJ in a vegetation map accuracy study: the errors tended to occur more frequently near 

756 



Figurc 3: Maximum likelihoud factor uf safety Figurc-l: Mllximum likelihood - Bonlcall 

Figun; 5: Worst case scenario Figurc 6: Stam!ard dc\'iatillll of maximum 
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polygon boUDdaries. 

This summary comparison ouly scratches the surface of the uncertainty model's potential. Unfortunately, 
humans have a limited ability to perceive multiple criteria simultaneously. The data displays are even more 
limited: a two-dimensional colour representation can only present a maximum of two or three spatially 
referenced variables simultaneously with any chance of comprehension. 

4.2 Model Variance 

The log-normally distributed variability in the model's output is summarized with a standard deviation (SO) 
surface (Figure6). In ordertostandardize all output as normally distributed, the log of the original value is stored 
in the map. The theming in Figure 6 demonstrates that the widest variability is found in the areas with the least 
slope; smaller SOs occur on the steeper sections. However, a closer examination of the SD themed surface 
reveals that the areas with the larger SOS are also very spotty - a great deal of local pixel-to-pixel variation 
is observed. This variation can be seen to be occurring in all of the source maps for the maximum likelihood 
summary. However, pixel-by-pixel, the sources also vary widely between the different realizations. This 
implies that the minor slope variations on gentie tetrain may influence the model significantly. Such an 
observation supportS a slope. stability equation sensitivity study [l7} in which slope had the greatest influence 
over output On a steep slope such as 500, a5° variation introducedby perturbing theDEMdoesnotsigniftcantly 
affect the model. On a relative flat plain, however, this 5° perturbation appears to significantly widen the model 
output variance, 

A:n animated display increases the amount of comprehensible information that can be presented to the viewer; 
time becomes a new variable in the visual summary . Variance values are particularly suited to this time-variant 
methodof presentation. A perspective animation using stability numbers modified by standard deviation gives 
instant feedback as to the type of surface containing greater or lesser uncertainty. Such an animation was 
produced to display the model' 5 variance. 

Exploratory data analysis reveals several interesting data correlations. When the 10% most unsafe areas under 
the maximum likelihood scenario are overlaid with the· 10% widest standard deviations, the results only 
intersect in 0.04% oftheirarea. When the former is combined with the 10% narrowest 50s, over 50% intersect 
This indicates that, generally, one can be most sure of the model's predictions in unsafe areas. 

The same test applied to the 10% safest areas demonstrate that, in general, the safest areas have the widest 
standard deviations (23% coincide). The exceptions - areas that show safe zones with narrow SOs -
correspond to bedrock outcrops. 

5 Discussion and ConclusioDS 

Naturalresource inventory methods are commonly mired in the paper mapera. Considerable information is lost 
in the translation from field datalfield experts to analytical data structures. Generally, the restrictions that 
required such data reduction techniques are no longer in force given current digital capabilities and should, 
therefore, be eliminated. Altman [1], among others, points out that the traditional conversion to 'bard' data 
occurs far too early in the modelling process. Retaining amaximum amount of data through the entire analytical 
process gives analysts flexibility and new windows. on data elements such as uncertainty and error. This study 
indicates one poteDtial metbod whereby retention of this inforrnationwnldbe put to good use. The techniques 
of exploratory spatial data analysis (l9} wnld yield many other uses Cor these data. 
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Boolean maps are simple, clear representations of idealized data structures in which boundaries are sharp and 
values exact to the nth decimal place. However, adopting the view that our perceptions and knowledge of the 
world are fraught with uncertainty devalues such simplistic representations. The fuzzy approach allows real· 
world uncertainty and the innate variability of natural phenomena to be represented. By its very nature, such 
a model is considerably more difficult to interpret than conventional results; yet the possibilities for database 
exploration that are opened up by the uncertainty model represent an entirely new spectrum of information. 
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