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Abstract  
 
Introduction: Maps are a common method for providing spatial information and 
learning about indoor and outdoor areas. Street maps and building maps enable people 
to find routes to previously unvisited locations. Unfortunately, because these maps are 
primarily visual in nature, people with visual impairments often cannot take advantage 
of the information available on these maps. Two mapping options available to people 
with visual impairments are tactile maps and GPS-based maps, but even these maps 
cannot always provide blind travelers with operational route knowledge.  
 
Objectives: One source of spatial information, which can augment the current mapping 
solutions, is natural language route descriptions provided by independent blind travelers 
who are familiar with the target area. For a traveler unfamiliar with a large area such as 
a university campus, a natural language route description that points out specific 
landmarks and spatial entities as well as provides context sensitive traveling instructions 
may improve the traveler’s use of a tactile or GPS-based map. Because natural language 
is unstructured, our long-term goal is to develop a system for building a route-based 
topological map from a collection of free text route descriptions by independent blind 
travelers. This paper focuses on finding and extracting landmarks from free text route 
descriptions written in English. The paper provides a brief explanation of how a 
topological map built from extracted landmarks can be used to generate new natural 
language route descriptions.   
 
Methodology: We developed a web-based questionnaire that asked people with visual 
impairments to write descriptions of routes with which they were familiar. Each 



respondent provided an indoor route and an outdoor route. We received 52 responses, 
resulting in 104 English route descriptions. To evaluate the landmark extraction process, 
each set of route descriptions was divided into two groups. 18 randomly selected route 
descriptions from each set, indoor and outdoor, were assigned to an evaluation group 
and the remaining route descriptions were assigned to a training group, resulting in 36 
descriptions in the evaluation group and 68 descriptions in the training group. The 
training set of route descriptions was analyzed for linguistic patterns that are used to 
identify landmarks. From these patterns, rules were written in the Java Annotations 
Pattern Engine (JAPE) pattern language. When a rule finds text that matches its pattern, 
it extracts the portion of the text containing the landmark.   
 
Results: The landmarks in the evaluation set of route descriptions were first identified 
manually. The JAPE pattern rules were run against the evaluation set. The landmarks 
extracted by the JAPE rules were then compared against the manually identified routes, 
and the standard information extraction scores (recall, precision, and F-measure) were 
computed. For the combined set of indoor and outdoor route descriptions the recall for 
the extraction process was 0.8487, the precision was 0.8286, and the F-measure was 
0.8386. 
 
Conclusions: Although the landmark extraction process did not extract several 
landmarks and incorrectly identified some text segments as landmarks, the system 
correctly extracted the majority of the manually identified landmarks. The extraction 
errors were due to the fact that the route descriptions contained incorrect spelling and 
grammar and had a wide variety of writing styles. It is unlikely that all possible 
linguistic patterns that identify landmarks would be seen in only 68 training 
descriptions. However, the results demonstrate that landmarks can be automatically 
extracted from natural language route descriptions. 
 
 
Introduction 
 
Because traditional street and building maps are primarily visual in nature, people with 
visual impairments often cannot take advantage of the maps' information available on 
these maps. Research continues into developing mapping solutions for the visually 
impaired with solutions including tactile maps and GPS-annotated maps. Both of these 
approaches rely on data from street level maps and often miss other information sources 
useful to blind travelers. One such source often missed in tactile and GPS-based maps is 
route descriptions by independent blind travelers who are familiar with the target area. 
For example, over the years, visually impaired seniors at a university will have learned 
of a large set of routes between buildings and room-to-room routes inside the buildings 
on the campus.  
 
This knowledge can be communicated to new students through natural language route 
descriptions. There exists research evidence that route knowledge sharing is routinely 



done by people with visual impairments in that they share route descriptions and 
verbally guide each other over cell phones (Gaunet & Briffault 2005; Kulyukin et al., 
2008). Capturing the route-based knowledge of experienced travelers would allow many 
spatial databases to be retrofitted for travelers with visual impairments. Passini and 
Proulx (1988) showed that people who have visual impairments prepare more for travel, 
make more decisions, and use more information than sighted travelers, so a route-based 
map built from experienced travelers' route descriptions could present spatial 
information to other travelers at a level of detail that they need for successful and safe 
navigation. Capturing this information from free text route descriptions would enable 
non-technical users to share their knowledge in a format with which they are already 
familiar. Natural language is a convenient format for learning new routes as well. 
 
There are several issues with free text route instructions as a spatial information source. 
First, natural language is unstructured information whereas path-planning algorithms 
need structured representations. Second, since free text route description would, most 
likely, be typed, grammar and spelling errors are a norm. Lastly, landmarks in natural 
language descriptions can be referred to in multiple ways. For example, a door could be 
referred to as “the door to the room,” “Room 225's door”, or just “the door.” 
 
To address these issues, we developed the Route Analysis Engine (RAE), a software 
program for extracting landmarks from natural language route descriptions and 
compiling the extract landmarks into sequential path data structures. New route 
descriptions can be generated from the set of available paths. Our paper focuses on 
landmark extraction and sequential path compilation. Only a brief explanation of new 
route description generation is given. 
 
Landmark Autotagging and Path Inference 
 
RAE's process of extracting landmarks from natural language route descriptions is 
called autotagging. Autotagging breaks a route description into a list of sentences, each 
of which is processed for landmarks. A sentence is tagged with all landmarks found in 
it. Since some sentences may not mention a landmark, a sentence can have zero or more 
landmark tags. Autotagging relies on information extraction (IE) techniques 
(Cunnigham 2006). Instead of a deep level of language understanding, we identify 
linguistic and grammatical patterns that people use when referencing landmarks in route 
descriptions. RAE's autotagging module is implemented on top of the ANNIE 
component of the GATE system (Cunnigham 2002). ANNIE rules are written in the 
regular expression based language JAPE (Java Annotations Pattern Engine). The rules 
define text patterns that signal the presence of a landmark.   
 
Some landmarks are well known. For example, the buildings on a university campus 
have well-known names and the rooms in many buildings have unique names, such as 
Room 405. In order to represent these well-known landmarks, RAE refers to a 
hierarchical set of known landmarks. The hierarchy is a tree representing “part-of” 



relationships. Larger and more general landmarks are stored higher up in the hierarchy, 
and landmarks that are more specific are stored lower in the hierarchy.  
 
As one moves down the hierarchy, the landmarks move from large areas, such as the 
entire university, down to landmarks marking specific locations, e.g. a water fountain on 
a specific floor of a specific building. The concept of hierarchical landmarks is similar 
to regions in the topological level of the spatial semantic hierarchy (SSH) (Kuipers 
2000). Regions in the SSH are areas that can contain smaller regions and can be part of 
larger regions; landmarks in the hierarchy can have sets of landmarks as children and 
can be children of larger landmarks. Currently, this landmark hierarchy is managed 
manually. In the ideal case, when autotagging identifies a landmark, the landmark 
matches to a landmark in the hierarchy. When such a match cannot be found, a user can 
manually tag a sentence at a later time and add the newly found landmark at a proper 
level in the hierarchy. To demonstrate the process of autotagging, consider this fragment 
of an actual route description submitted by a visually impaired traveler: “You are 
standing with your back to the south entrance to the Quick Stop. Turn left so you are 
walking east. On your left you will pass the ATM machines which make distinctive 
sounds, and the campus post office and mailboxes...” The sentences are autotagged as 
follows: 

1. SENTENCE: You are standing with your back to the south entrance to the 
Quick Stop.  
LANDMARK TAGS: <south entrance>, <Quick Stop> 

2. SENTENCE: Turn left so you are walking east.  
LANDMARK TAGS: EMPTY 

3. SENTENCE: On your left you will pass the ATM machines which make 
distinctive sounds, and the campus post office and mailboxes. 
LANDMARK TAGS: <ATM machines>, <campus post office>, <mailboxes> 

 
After autotagging, the route description is given a unique id. Each sentence is assigned a 
unique, ascending id and is assigned to the route description. Each sentences’ tags are 
saved and a reference links the tag to the appropriate sentence. If the tag represents a 
landmark in the hierarchy, that relationship is maintained. A user can approve the 
landmark tags, delete them, modify them, or add additional tags. To rebuild the original 
route description, the sentences are concatenated via their unique ids in ascending order.  
 
Autotagging Evaluation 
 
In 2007, we placed a questionnaire on the Internet asking visually impaired travelers to 
submit descriptions of two routes with which they were familiar and traveled regularly 
(Kulyukin et al., 2008). One route was an indoor route from one location in a building 
to another location in the same building; the other route was an outdoor route between 
two outdoor locations. We received 52 responses for a total of 104 route descriptions. 
To evaluate the landmark extraction process, each set of route descriptions were divided 
into two groups. 18 randomly selected route descriptions from each set, indoor and 



outdoor, were assigned to an evaluation group and the remaining route descriptions 
were assigned to a training group, resulting in 36 descriptions in the evaluation group 
and 68 descriptions in the training group. The route descriptions in the training group 
were analyzed manually for common text patterns for identifying landmarks. In 
analyzing route descriptions, we used the list of spatial prepositions by Jackendoff and 
Landau (1992). The found patterns were coded as JAPE pattern rules.  
 
The rules are executed in four phases. In the first phrase, eight groups of keywords and 
prepositions that are used before or after landmarks in route directions are marked.  

1. Cardinal directions, e.g., North, South, western, etc.  
2. Distance related terms including terms such as “feet”, “yard” and “steps” as well 

as more general terms such as “length” and “width”.  
3. Jackendoff's 49 simple transitive prepositions, e.g., “about”, “across”, and “in”.  
4. Jackendoff's 24 intransitive prepositions, e.g.,  “away”, and “together”  
5. Jackendoff's 8 compound transitive prepositions, e.g., “to the right of.”  
6. Terms related to angles such as “angle” and “degrees”.  
7. Terms and phrases representing Talmy's (1983) concept of a biased part, i.e., 

references to parts of an object. In the sentence, “Enter the door at the front of 
the building,” “building” is the object of interest and “front” is the biased part. 
Other sample phrases would include “at the end of” and “in the middle of”.  

8. Egocentric references, i.e., references to the traveler including the traveler's cane 
and guide dog, such as “to your right”, “with your back”, and “your dog”. 

 
The second phase looks for matches in the landmark hierarchy. If a text segment 
matches a landmark in the hierarchy, it is tagged as a landmark. A reference is retained 
to the landmark in the hierarchy, since this tag refers to a specific authentic landmark. 
The third phase marks all noun phrases in text as potential landmarks. Since all 
landmarks are represented as noun phrases but not all noun phrases are landmarks, the 
fourth and final phase heuristically annotates only the appropriate noun phrases as 
landmarks. Specifically, the fourth phase looks for text phrases that match patterns 
consisting of the markers found in phase one, the noun phrases found in phase three, 
and other words that join the markers and noun phrases.  
 
Each of the eight groups in the first phase has a corresponding set of rules in the last 
phase. For example, the phase 1 distance group has a set of rules related to distance in 
phase 4. There are two exceptions to this one-to-one relationship. The first exception is 
the rules that use verbs as the key for identifying landmarks. Since the route instructions 
are primarily command and action oriented, verbs are a good identifier that some object 
is being referred to, as in “Follow the hall” or “Open the door”. This rule set relies on 
the fact that prior to running these phases, ANNIE processes the entire text with a part-
of-speech tagger which annotates each word with its part-of-speech. The second 
exception is the rules that look for patterns similar to Talmy's (1983) concept of 
secondary reference objects. For example, in the sentence “Go through the entrance of 
the building,” the “entrance” is the primary reference object and would be considered a 



landmark due to the spatial intransitive “though”. However, “building” is also a 
landmark even though it has no spatial marker. However, its connection to “door” via 
the “of” marker reveals it to be a secondary landmark. This rule set requires that the 
other nine sets of rules in this phase be run first. As a brief example of how the 
landmark extraction and pattern rules work, the spatial intransitive rule set in the fourth 
phase includes this pattern: 

{SpatialIntransitive} 
( {Token.category==IN}| {Token.category==TO} )* 
( {Token.category==DT} )? 
( {NounPhrase} ):landmark 

This pattern matches any text fragment in a sentence which starts with a spatial 
intransitive marked during the first phase, followed by 0 or more prepositions (IN and 
TO part-of-speech categories), followed by 0 or 1 determinants (DT part-of-speech 
category), and ending with a noun phrase identified during phase three. Any string of 
text matching this pattern would have the noun phrase tagged as a landmark. For 
example, in “You are in the main hall,” “in” is a spatial intransitive, “the” is a 
determinant, and “main hall” is a noun phrase. Since “in the main hall” can be reduced 
to the token sequence “<SpatialInstransitive> <DT> <NounPhrase>”, the phrase “main 
hall” would be identified as a landmark. 
 
The task of creating a new route description out of two intersecting routes is done by 
joining appropriate segments of the intersecting route descriptions. Path inference 
requires a set of tagged route descriptions, a starting location, and an ending location as 
input. The tagged route descriptions are compiled into a directed graph and the system 
searches for paths in the graph between the starting and ending landmarks. If a path is 
found, the sentences along that path are used to create the new route description. 
Although space limits a full discussion of the path inference process, the following 
example describes the basic process. Suppose one user had entered the following route 
that describes a route from Animal Science building to the Ray B. West building on 
USU's campus (see Figure 1a): Exit the Animal Science building doors on the south 
side. Walk straight until you find the sidewalk entrance to the Quad's sidewalk. Walk 
south, passing the main intersection until you detect a road. Carefully cross the street. 
Continue to walk south until you find the doors to the Ray B. West building. 
 
Another user has entered the following route that describes a route from Old Main to the 
Distance Learning Center on USU's campus (see Figure 1b): Exit Old Main walking 
east. You will walk through the Quad, passing the intersection. Keep walking straight 
until you run into grass. Turn left, walking north. Walk until you detect the bike racks 
on your right and then turn right. Walk east until you find the stairs leading to the 
entrance to the distance learning center. 
 
Note that both of these descriptions mention an intersection. The first refers to it as the 
“main intersection” and the second as the “intersection.” During autotagging, these are 
extracted and the appropriate sentences are tagged. During user approval of the tags, 



users would ensure that these tags referred to the known tag “Quad sidewalk 
intersection” representing this intersection in the hierarchy. Since both route 
descriptions have sentences that are tagged with a common, unique landmark from the 
landmark hierarchy set, it is now possible to generate a proposed new route description 
from Old Main to Ray B. West (see Figure 1c). The path inference would find the 
following new description: (From second) Exit Old Main walking east. You will walk 
through the Quad, passing the intersection. (From first) Walk south until you detect a 
road. Carefully cross the street. Continue to walk south until you find the doors to the 
Ray B. West building. The first half of the new route comes from the second 
description, while the second half from the first description. The key is that both 
original route descriptions have sentences tagged with the landmark “Quad sidewalk 
intersection.” Because the sentences are not edited but only joined during the 
construction of the new route description, a user is still required to ensure that the new 
route description is clear and can be safely followed. 
 
Results and Discussion 
 
After the pattern rules were developed from the training set, the rules were tested on the 
evaluation set of route directions. All landmarks in the evaluation set were identified 

 
a)  original text route description 

 
b)  original text route description 

 
c)  inferred text route description 

Figure 1. Visual representations of the route descriptions overlaid on a map of USU. 
 



manually. Four scores were calculated: 
• Correct – the autotagged and manually annotated landmarks match exactly. 
• Partial – the autotagged landmark overlaps the manually annotated landmark. 

For example, in “From the information desk walk straight,” “information desk” 
would be manually annotated but autotagging tagged “information desk walk”. 

• Missing – a landmark was manually annotated but not found during autotagging. 
• Incorrect – autotagging incorrectly identified some text segment as a landmark.  

 
These scores, shown in Table 1, were used to calculate precision, recall, and F-measure 
(Chinchor 1992) for each group and the total evaluation set (see Table 2). The counts 
and scores show that the majority of the manually annotated landmarks, 82.2%, were 
extracted correctly. The scores for the indoor routes are slightly higher than for the 
outdoor routes. This may be because the indoor routes tended to be shorter than the 
outdoor routes. The indoor routes have an average of 9.1 sentences and the outdoor 
routes have an average of 16.2 sentences. The average sentence length is comparable at 
13.8 words per sentence for indoor routes and 14.0 words per sentence for outdoor 
routes. The extra sentences in outdoor routes may signify either that the distances for 
indoor routes were shorter than the distances for the outdoor routes or that outdoor 
environments are less structured and require more information than indoor routes to 
successfully navigate. In either case, further analysis is required to verify these 
conjectures. A number of landmarks were missing or not extracted, 12.9%, and a larger 
number of incorrect landmarks were autotagged. This is not surprising given the data 
set. The route descriptions are all in English but have a wide variety styles. Some 

 Indoor Routes Outdoor Routes Totals 
Correct 252 460 712 
Partial 18 28 46 
Missing 31 77 108 
Incorrect 27 102 129 
Table 1. Results of running the extraction rules on the evaluation route descriptions. 
 
  Indoor Routes Outdoor Routes Totals
Precision 
(P) 

correct + (partial * .5) 
correct + partial + incorrect

0.8788 0.8034 0.8286

Recall (R) correct + (partial * .5) 
correct + partial + missing 

0.8671 0.8389 0.8487

F-measure 2.0 * P * R 
P + R 

0.8729 0.8208 0.8386

Table 2. Computed scores for each evaluation set. 



sentences are simple and declarative, e.g., “Go out the door and make a right.” Others 
are longer with more complicated phrasing, e.g., “If you miss it there are benches on the 
outside which will tell you your near where you want to be listen for traffic though 
because there is a drive through you've passed the door if you get to that side of the 
building and need to backtrack.” Since people have a wide variety of writing styles, it is 
unlikely that all possible grammatical patterns would have been seen in 68 training 
examples. A larger training set would help resolve this issue. 
 
Related Work 
 
Smith-Kettlewell's Tactile Map Automated Production (TMAP) (Miele et al. 2006) is 
an example of the tactile map. The source data is the US Census Bureau’s Topologically 
Integrated Geographic Encoding and Referencing System (TIGER®) line data which 
contains features such as streets, roads, and rivers, and geographic boundaries. TMAP 
has also been extended to work the Talking Tactile Tablet (Miele et al. 2006) which 
provides a more interactive approach than a printed tactile map. The issue with TMAP 
is not the technology but with the data source. TIGER data is meant to support census 
reporting, not assistive navigation for the blind. The level of detail may not be sufficient 
in some areas for a person with a visual impairment to follow a route safely. Sendero 
GPS (Sendero, 2009) is an example of a GPS-based solution. While primarily an 
assistive device to be used during navigation, it also provides a preview feature called 
the "virtual explore" mode. In this mode, the user can preview and explore a route as if 
they were actually walking it. The system contains over 13,000,000 points of interests 
which allow the user to know which buildings and stores they will be walking by as 
they travel the route. As with all GPS systems, the main limitation of this type of 
technology is that is does not work indoors. 
 
Conclusions 
 
RAE's autotagging process can extract landmarks from natural language route 
descriptions. This changes the representation from unstructured to structured data. Once 
a set of structured route descriptions are available, path planning and inference are 
applicable. This allows parts of different route descriptions to be combined to form new 
route descriptions. User editing of the new route descriptions ensures that the routes are 
understandable and safe. RAE is intended to complement other mapping technologies 
for the visually impaired. A system like TMAP could supplement a tactile map with a 
natural language route direction explaining finer details. RAE is designed to not only 
guide travelers and build maps targeted towards people with visual impairments but also 
to help provide a better understanding of the types of route directions used and needed 
by travelers with visual impairments. A better understanding of route descriptions 
produced by the people with visual impairments will help to improve all navigation 
assistance tools. 
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