The uniform European Union as a mosaic of unequal regions: Geographic Approach – Cartographic Documentation

Nikolaos Karanikolas, Pery Lafazani, Myron Myridis, Dimitrios Ramnalis

PhD Candidate, Department of Cartography, A.U.Th
Lecturer Department of Cartography, A.U.Th
Professor Department of Cartography, A.U.Th
PhD Candidate, Department of Cartography, A.U.Th

ABSTRACT

The segregation of the states – members of the European Union into Geographic Regions of Planning, gives the opportunity to read and analyze the transregional inequalities, whether they refer to each country separately or to the total of the European Union. These inequalities may be more intense between districts of the same country than between regions of adjacent countries. All the characteristics – variables having the Region as a spatial reference unit, can document and represent similarities and differences among the regions, by means of simple and complex indicators. The creation and operation of a Geographic Atlas of the states – members of the European Union, constitute a dynamic tool for the continuous human-geographic research for the European completion. The desegregation of inequalities and the diffusion of a versatile development among the regions are not obstructed by national borders. The Geographic Space of the European Union is identified with its Regional Space and what is recorded and analyzed is either problematic or developed regions.

1. THE GEOGRAPHIC ATLAS: A DYNAMIC TOOL OF HUMAN GEOGRAPHIC RESEARCH.

1.1. Introduction

The European Union including 25 nations has been a reality since May 2004 In the European Geographic Space. They are democratic countries which have committed to cooperate for peace and prosperity. Moreover, they have established common institutional organs which have some of their powers. In this way, the democratic decision – making concerning specific issues of common interest at a European level is possible. This joint exertion of sovereignty is known as ‘European completion’; this was an idea formulated after the World War II and planned for the prevention of a new similarly disastrous war.

The states – members of the European Union today are: Belgium, Germany, France, Italy, Luxemburg, the Netherlands (1954), Denmark, Ireland, the United Kingdom (1973), Greece (1981), Spain, Portugal (1986), Austria, Finland, Sweden (1995), Estonia, Cyprus, Latvia, Lithuania, Malta, Hungary, Poland, Slovakia, Slovenia, the Czech Republic (2004). During the first period of its operation, the collaboration among the states – members mainly concerned trade and economical issues. Today, the regional growth, the protection of the environment, other serious subjects directly associated with all citizens’ everyday life and also the management of the positive repercussions of globalization are some of the sectors of interest in the European Union.

Different people, different languages, cultures and traditions make efforts to communicate and balance within the European Union, in order to have a multidimensional Development of each state – member (in terms of its Economy, Sciences, modern Technologies, Arts). The material and intellectual prosperity of the European citizens, as a result of its growth, presuppose the knowledge of those differences.

The multiculturalism of the geographic European space is an invitation and also a challenge for a dynamic and multidimensional growth through geographic severity, which will contribute to the people's unity and the geographic relation among the regions. The mapping of primary characteristics, simple and complex indicators and also new variables that result from the statistical processes of the above, visualizes and leads to a documented decision – making that concerns interventions of any type in one or more regions. Characteristics that show interregional inequalities, such
as the differentiation of each region in relation to the average level of the European Union, the record of the richest and the poorest region, result from the reading of a Geographic Atlas.

All the above are feasible when geographic data is available at regional level. The collection of that data is surely not always complete; as a result, there is an insufficient documentation of the regions concerning the phenomenon mentioned. However, even if this is a fact, the use of the Geographic Atlas is very important for the examination of the human-geographic space of the European Union, the representation of differences and also the recording of continuities and cohesions.

1.2. Design of the ATLAS

There are three basic steps for the design of an electronic atlas outline:

a) The use of a statistical package (like SPSS) for the statistical analysis of data.
b) The use of a common GIS system provides the possibility to work with a database and create the first images of the atlas. A database providing all the statistical analysis of the atlas must be constructed.
c) The use of a graphic application prepares the final maps.

Particular choices must be made regarding the format of the files, so that we can have the atlas over the web or in a compact disk. In the conclusion of the last task – the one of the completion of the atlas in a multimedia environment – all the new technologies of these systems must be used in order to achieve the best format of the Atlas.

1.3. The ATLAS reading

On the basis of what was reported above, we tried to indicate the use of such an Atlas as a tool of human-geographic reading and research. There are three map categories which correspond to the kind of variables mapped.

1st category

The mapping of primary characteristics, such as: population, size of agricultural ground, production of agricultural products, number of people occupied, length of motorways etc.

This category consists of ‘static’ maps that show the absolute value of the phenomenon in specific times. The diachronic mapping indicates the diachronic progress of the phenomenon.

2nd category

The mapping of simple and complex indicators, such as: population density, youth indicator, old age indicator, emigration, rate of areas covered by forests, rate of areas cropped with cereals, rate of people occupied in industries, length of motorways per 100km2 size, the number of cars per 1,000 inhabitants etc.

This category includes maps which represent the dynamics that result from the relation between variables – phenomena in particular period of time as well as diachronically. It is about particularly important maps showing the information represented by those indicators as values, through their different colour tones.

3rd category

It refers to the mapping of variables that result from multi-variable statistical analyses and in this way create homogeneous geographic areas. They are ‘new’ variables – phenomena resultant from groupings of such characteristics and their dynamics is associated with the spatiotemporal progress of the initial variables. Here as well, the colour tones indicate the intention of the phenomenon mapped.

1.4. The ATLAS use
Because the limited space of an article does not allow the geographic ‘reading’ of the maps that belong to the three categories, we will focus the Atlas use on some maps of the 2nd and the 3rd categories. They are maps which indicate the population, demographic, productive and generally developmental dynamics of the European Union regions, during 1999 and 2000 (data received from Eurostat).

Figure 2: Population Density (citizens / km²).

The population density shows its highest values on the one hand in the geographic area that goes cross the European Union from the United Kingdom, Germany to Italy and on the other hand to Poland. Single regions with high values are certainly noticed in: Greece, France, Spain, Hungary, Slovakia, the Czech Republic and Austria. They are regions including the capitals of these countries.
The positive values of the phenomenon are shown in red color (regions that accept immigrants) and the negative values of it are shown in blue color (regions that immigrate). We can see high immigration almost in the mass of the regions of Sweden and Finland, in regions of northeastern Germany, northeastern and southern France, northeastern Hungary and Poland. The lowest migration appears in Estonia and Latvia.

This indicator shows the death rate in each region. The different tints of purple indicate its size. Regions with the highest death rates are noticed in the eastern, northern, central and western part of the European Union. There is no data concerning Cyprus and Malta.
It is shown from the factorial analysis of data concerning employment and unemployment. High and low employment is respectively shown with the positive and negative values of a factor. Regions with no data are indicated with white.

High employment is also noticed in regions of central, northern, northeastern, northwestern and southern European Union.

The highest values of the phenomenon are presented in the southern part (Greece) and the western part (Poland) of the European Union. There is no data concerning the regions in white.
Employment in this sector is noticed to have the lowest values in the same regions. In the rest of the European Union, where there is data, employment shows higher values.

The positive values of the factor indicate high unemployment here as well and the low ones respectively show slight unemployment. There is no data concerning the regions in white.

Areas with high unemployment appear in northeastern, southern, western and some in the centre of the European Union.
1.5. Conclusions

A Geographic Atlas in the shape already described, can actually operate as a dynamic tool of human-geographic analysis and further processing of each type of geographic data. The relations among data, geographic space and time are indicated via geographic analysis and shown by means of maps.

It is a continuous elaboration of data, produced information, conclusions and applications that re-feed the Data Bases with new elements and so on; a continuous action specifically aiming at the documented comprehension of the geographic space, in order to apply the regional policy for peace and prosperity and generally the development of the countries that belong to the European Union.

Through the maps presented, it obvious that the lack of data concerning some regions cuts down a part of the dynamics and the function of the Geographic Atlas. This problem, however, is practical and it is connected with the corresponding Supplying Data National Services of the states – members. We would like to believe that it will soon be solved, so that the Geographic Atlas of the Regions that belong to the European Union can function as a dynamic tool for the human-geographic research in the area of its authority.

2. BIBLIOGRAPHY

Lafazani P. (2003), “Geographic Methods of Analysis, University Memorandum, Thessaloniki”.

Web page: http://europa.eu.int/index_el.htm
Web page: http://europa.eu.int/comm/enlargement/
Web page: http://europa.eu.int/abc/maps/index_el.htm

CV of the presenter

Karanikolas Nikolaos

- Rural & Surveyor Engineer, School of Engineering, Aristotle University of Thessaloniki (1997).
- PhD Candidate in Department of Cartography, A.U.Th. (1999).
- Member of Hellenic Cartographic Society (2002).