Land cover map of Europe at scale 1:5 000 000

Ján Feranec*, Tomáš Soukup**, Jozef Čižmár***, Jozef Šafár****, Pavol Kontra*****

* Institute of Geography, SAS, Bratislava, Slovakia
** GISAT s.r.o., Prague, Czech Republic
*** Faculty of Civil Engineering, SUT, Bratislava, Slovakia
**** TYPOCON s.r.o., Bratislava, Slovakia
***** VKU, stock company, Harmanec, Slovakia

Abstract. The paper demonstrates compilation of land cover map of Europe making use of the CORINE land cover (CLC) data and subsequent printing of the map by computer technology at the scale ca 1:5 000 000. The topographic base in azimuth equivalent projection consists of: state borders, capitals, some selected cities, communications (railways and roads), a part of river network, which is not covered by the CLC data and the shaded terrain. The thematic overlay contains CLC data from 2006 on the first hierarchic levels and selected classes on the third level (broad-leaved, coniferous and mixed forests). The map was printed by the hybrid digital printer equipped with the piezoelectric inkjet printing heads with four levels of grey scale and a variable size of the print drop from 14 to 42 picolitres. Existence of such map makes possible simultaneous perception of the land cover picture of the different parts of Europe.

Keywords: Land cover, Topographic base, Thematic map, Europe

1. Introduction and background

Present computer technologies, particularly the Geographical Information Systems (GIS) make it possible to collect various statistical characteristics concerning landscape objects both in numerical and graphical forms. Maps are such outputs. Kraak & Ormeling (1996) listed the types of data most frequently applied in map-making:

- Data obtained by terrestrial survey;
- Data obtained by photogrammetric survey;
• Data obtained by satellite images (sources of the corresponding thematic information applicable to mapping via analogue and digital interpretation techniques);
• Data of the Global Positioning System (GPS), which improve the accuracy of existing georeferencing methods or can be used in field surveys;
• Data obtained by digitizing or scanning of analogue maps (by vector or raster approach);
• Existing state boundary files, for instance those concerning the borders of administrative units, communications etc.;
• Socio-economic statistical files provided by national statistical services;
• Environmental data files – one of them is the CORINE database (Coordination of Information on the Environment) (Heymann et al. 1994).

Pravda et al. (1998) describes examples for application of the CORINE land cover (CLC) in thematic map making (see Table 1). The table shows that the published CLC maps only characterize land cover (LC) of some European countries or their parts. So far no CLC map of Europe has been made and published.

The main reason why the preparation of the Land Cover Map of Europe at scale 1: 5 000 000 is here commented and demonstrated is connected with the existence of the CLC2006 database at scale 1:100 000 for 38 European countries (except for Greece where the data available are from 2000). Reality concerning the occurrence of LC class areas characterised according to a single nomenclature is recorded via this database. Representation of CLC classes in Europe on a single map may provide information about their occurrence and simultaneously offer the option to observe spatial relationships between them.

<table>
<thead>
<tr>
<th>Map Description</th>
<th>Issued (year)</th>
<th>Scale</th>
<th>Number of colours</th>
<th>Numbers of screens</th>
<th>Minimal area in map (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grand-Duche de Luxembourg</td>
<td>1990</td>
<td>1:100.000</td>
<td>24</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>2. Mapa d’usos del sòl de Catalunya</td>
<td>1990</td>
<td>1:250.000</td>
<td>20</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>3. Mapa CORINE Land Cover de Catalunya</td>
<td>1993</td>
<td>1:250.000</td>
<td>42</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4. Mapa CORINE Land Cover de Catalunya (ileg. europea)</td>
<td>1993</td>
<td>1:250.000</td>
<td>42/56</td>
<td>6/16</td>
<td>1</td>
</tr>
<tr>
<td>6. CORINE Land Cover. Map Sheet C7-Dublin and C8-Cork</td>
<td>1995</td>
<td>1:500.000</td>
<td>44</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>7. CORINE – Land Cover Liege-Namur-Leuwen</td>
<td>1995</td>
<td>1:100.000</td>
<td>24</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>8. Land use. In Atlas of Poland</td>
<td>1996</td>
<td>1:1,500.000</td>
<td>13</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>9. Mapa CORINE Land Cover de la Mediterrània Occidental</td>
<td>1996</td>
<td>1:500.000</td>
<td>42</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
10. Mapa d'usos del sòl de Catalunya 1996 1:250.000 21 - 0.5
11. Slovakia – CORINE – Land Cover Tour-
ist Map 1996 1:500.000 30 13 2
13. CORINE Land Cover France 1997 1:1.000.000 44 - 0.5
14. Land Cover. Territory: Zvolen-Detva-
Krupina 1998 1:100.000 19 19 2

Table 1. Some characteristics of issued CLC maps (Pravda et al. 1998, Feranec & Pravda 1999).

Bibliography of maps in Table 1

The *Land Cover Map of Europe* can be effectively accomplished if there is available a harmonized European Spatial Data Infrastructure (SDI). As only partial initiatives and programmes for the preparation of such infrastructures exist so far (Hopfstock 2012), it was decided to use spatial pan-European data accessible to authors of this paper. The aim is to demonstrate the LC Europe map making based on CLC data and the topographic data used for compilation of thematic European maps at synoptic scales at the VKÚ, stock company in Harmanec (SK) and its printing by computer technology.

2. **CLC database**

Derivation of LC Europe database became the integral part of the CORINE Programme in 1985 initiated by the European Commission with the aim to create a consistent and compatible database about the environment of the EU Member states. The first CLC1999 project ran under auspices of the European Commission in 1995; the second CLC2000 Project was auspiced by the European Environment Agency (EEA) and the Joint Research Centre (JRC) of the European Commission in 2000, and the third CLC2006 Project became part of the Global Monitoring for Environment and Security (GMES) Project – first-track service on land monitoring (Büttner et al. 2004, EEA-ETC/LUSI 2007, Feranec et al. 2007, Steenmans & Perdigao 2001). At present the CLC2012 Project runs in the context of the GMES Initial Operation (GIO) land framework (Feranec et al. 2012).

Areas of CLC2006 classes were identified via computer aided visual interpretation of satellite images SPOT-4 and/or IRS LISS III (for two dates in 2006 ±1 year) with the geometrical accuracy of images ≤ 25 m, the least size of identified area of 25 ha, and thematic accuracy of identified CLC classes was ≥ 85% (EEA-ETC/LUCI, CLC2006 technical guidelines, 2007).

Part of the thematic content are areas of CLC2006 classes of the first hierarchic level and selected classes of the third level (44 classes of the CLC nomenclature are aggregated and generalized into 8 classes) (Heymann et al. 1994):

1. Artificial surfaces (all classes 1),
2. Agricultural areas (all classes 2),
3. Broad-leaved forest (311),
4. Coniferous forest (312),
5. Mixed forest (313),
6. Shrub and/or herbaceous vegetation and open space (321, 322, 323, 324, 331, 332, 333, 334 and 335),
7. Wetlands (all classes 4),
8. Water bodies (all classes 5) and the river network from the topographic source.
The thematic content was modified – classes of the first hierarchic level of nomenclature were assigned three classes of its third level, part „Forest and semi-natural areas“ – 311, 312 and 313. The map with the proposed content emphasizes classes of the European forest landscapes. The content of map legend prepared based on CLC data though, can be adapted to the purpose for which the map will be issued.

3. **Topographic base**

The topographic source of the thematic LC map is the *Map of Europe* at the scale 1:4 000 000 owned by the VKU, stock company. The following layers were used:

- borders with lettering of states,
- selected settlements with lettering,
- communications (railways and roads),
- waters – they complement the river network which was not identified by satellite images (pursuing the criteria of the CLC project, rivers or their parts wider than 100 m, water bodies larger than 25 ha were identified).

Shaded terrain derived from GTOPO30 dataset. GTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several raster and vector sources of topographic information. Completed in late 1996, it was developed through a collaborative effort led by the U.S. Geological Survey’s Center for Earth Resources Observation and Science (EROS). For the map purposes, version of GTOPO30 data processed and distributed by EEA for presentation purposes has been used.

4. **Integration of the topographic base with generalized CLC data**

For the final map compilation, CLC data were combined with selected layers from topographic map and shaded terrain of Europe. The CLC data, nowadays obtained under the European GMES service (Global Monitoring for Environment and Security), arise from primarily digital seamless vector layer covering 38 countries of Europe. Regarding the resolution and size of the original vector layer and the subsequent need of generalization, a derived raster layer with resolution 100 × 100 m distributed by the EEA (European Environment Agency) was used for the purpose of this map. Topographic layers – state borders with state lettering, selected cities with lettering, communications (railways and roads) and water bodies were extracted from the *Map of Europe* at the scale 1:4 000 000 provided by VKU, stock
company. Shaded terrain uses elevation data derived from GTOPO30 dataset.

5. Printing of the map on the hybrid digital printer

Copy of the map was printed on the hybrid digital printer equipped with the piezoelectric inkjet printing heads with four levels of shade of grey and a variable size of the print drop from 14 to 42 picolitres. The printer works in the system mixing CMYK colours hardenable by UV radiation with the Light Cyan and Light Magenta inks added. The used inks are optimised for printing of firm slab and flexible roll material with high resistance to external effects.

6. Survey of CLC characteristics in the pan-European context

The CLC2006 data represented by Table 2 and Figure 1 provide the topical view of the European LC. Artificial surfaces (class 1) including the areas of urban fabric; industrial, commercial and transport units; mine, dump and construction sites and artificial, non-agricultural vegetated areas with total area of 21,494,919 ha (3.18%) (see Table 2). Agricultural areas (class 2), all CLC classes 2 (Heymann et al. 1994) cover 244,177,622 ha in 38 countries and represent 36.12% (see Table 2). Areas of this class are most numerous in lowland and hilly landscape. Forests of Europe include the areas of classes 3, 4 and 5, Broad-leaved (311) occupy 54,932,363 ha, Coniferous (312) 74,115,710 ha and Mixed (313) 34,200,846 ha (see Tab. 2) are at the second position in terms of area 163,248,919 ha (24.15% of 38 countries’ area). They occur in mountain ranges, but also in lowland and hilly landscapes. Shrub and/or herbaceous vegetation and open space (class 6), which covers e.g. natural grasslands, transitional woodland/shrubs, moors and heathland, sclerophyllous vegetation, beaches, dunes, sand plains, bare rocks, sparsely vegetated areas, etc. occupy the area 115,249,777 ha (17.05%). This area occurs in the range from high mountains to the sea or ocean coasts (see Table 2 and. Figure 1). The two last classes include Wetlands (class 7) occupying 13,501,840 ha (2%) and Water bodies (class 8) with the surface of 14,851,271 ha (2.2%) (see Table 2 and Figure 1).
Table 2. Statistical characteristics of the CLC2006 classes in pan-European context.

<table>
<thead>
<tr>
<th>CLC classes ¹</th>
<th>CLC2006 ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1st, 2nd and 3rd levels)</td>
<td>Total area (in ha)</td>
</tr>
<tr>
<td>1. Artificial surfaces (all classes 1)</td>
<td>21,494,919</td>
</tr>
<tr>
<td>2. Agricultural areas (all classes 2)</td>
<td>244,177,622</td>
</tr>
<tr>
<td>3. Broad-leaved forest (311)</td>
<td>54,932,363</td>
</tr>
<tr>
<td>4. Coniferous forest (312)</td>
<td>74,115,710</td>
</tr>
<tr>
<td>5. Mixed forest (313)</td>
<td>34,200,846</td>
</tr>
<tr>
<td>6. Shrub and/or herbaceous vegetation and open space (321, 322, 323, 324, 331, 332, 333, 334 and 335)</td>
<td>115,249,777</td>
</tr>
<tr>
<td>7. Wetlands (all classes 4)</td>
<td>13,501,840</td>
</tr>
<tr>
<td>8. Water bodies (all classes 5) ³</td>
<td>14,851,271</td>
</tr>
<tr>
<td>Total</td>
<td>572,524,348</td>
</tr>
</tbody>
</table>

¹ CLC nomenclature see Heymann et al. (1994)
² Excluding Greece, not available for CLC2006. It was substituted by CLC2000 data in final map.
³ Sea and Ocean is excluded as there is large 523 buffer around CLC datasets and it would completely hide inland water share.

7. Conclusion

The map demonstrated one of possible ways for the production of thematic maps of landscape in the pan-European context by application of the vector CLC database. The map also provides the basic information about occurrence and area of LC classes and their mutual interactions at a concise scale of 1: 5 000 000, which may facilitate an overall comprehension of the current European landscape structure.

Acknowledgements: This paper is one of outputs of the project VEGA Grant Agency No 2/0006/13 „Changes of cultural landscape: analysis of extension of urban fabric and farmland abandonment processes applying land cover databases“, pursued at the Institute of Geography of the Slovak Academy of Sciences. We would like to acknowledge the European Environment Agency for its vision and effort in support of CLC activities in Europe. Authors are grateful to Hana Contrerasova for translation of this paper into English.
Figure 1. The spatial distribution of generalized 8 CLC land cover classes of Europe for the year 2006.

References

Pravda J, Feranec J, Otahel J, Husar K (1998) Kartografická aplikácia bázy údajov CORINE land cover v mierke 1:100 000 (cartographic application of CORINE Land Cover Database at scale 1:100 000), Geograficky casopis, 50(1):21-33

Steenmans Ch, Perdigao V (2001) Update of the CORINE Land Cover Database. In Groom G and Reed T (Eds), Strategic Landscape Monitoring for the Nordic Countries. Nordic Council of Ministers, Copenhagen, 101-107