Integrating LiDAR data into the workflow of cartographic representation.
Cartographic Workflow I.

1. Geodata available?
2. Capture
 - Surveying
 - Scanning old maps
 - LiDAR-flights
 - Capture technical data
3. Import of data
 - Vector (Nat. GDB)
 - Raster data (WMS)
 - Digital elevation models
4. Complete Geodata
 - GPS, Laser Range Finder
 - Orthophotos & DEM while vectorizing:
 - Contour lines
 - Road & tracks
 - Vegetation
 - Cliffs
 - Others
 - Open Street Map
5. Editing / Construction

Yes/No

Complete

OCAD AG
Mühlegasse 36
CH-6340 Baar / Schweiz
www.ocad.com

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Cartographic Workflow II.

1. Editing / Construction
 - Editing Vectors
 - Topological Adjustments
 - Editing Raster
 - Editing DB

2. Visualization
 - Individual Visualization
 - Generalization
 - Text Placement

3. Map Layout
4. Export of Data
 - Mobile devices
 - GDB, WMS
 - Web maps
 - Printing

5. Added Value
 - Course Setting
 - Routing (OSM)

OCAD AG
Mühlegasse 36
CH-6340 Baar / Schweiz
www.ocad.com

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Orienteering Maps.

8 Years ago: LiDAR data / DEM / Tablets (OCAD 10/11)

• Base map: Digital Survey Maps / WMS / LiDAR data
 ➔ Contour lines
 ➔ Relief shading
 ➔ Slope map
 ➔ Density Maps
 ➔ Intensity Maps

• Surveying: GPS Receiver ➔ Tracks
 Laser Range Finder
 Tablet PC
Cartographic Workflow I.

1. Geodata available?
 - Yes/No

2. Capture
 - Surveying
 - Scanning old maps
 - LiDAR-flights
 - Capture technical data

3. Import of data
 - Vector (Nat. GDB)
 - Raster data (WMS)
 - Digital elevation models
 - Technical data (DB, Lists)

4. Complete Geodata
 - GPS, Laser Range Finder
 - Orthophotos & DEM while vectorizing:
 - Contour lines
 - Road & tracks
 - Vegetation
 - Cliffs
 - Others
 - Open Street Map

5. Editing / Construction
 - Complete

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Cartographic Workflow II.

Editing / Construction
- Editing Vectors
- Topological Adjustments
- Editing Raster
- Editing DB

Visualization
- Individual Visualization
- Generalization
- Text Placement

Export of Data
- Mobile devices
- GDB, WMS
- Web maps
- Printing

Added Value
- Course Setting
- Routing (OSM)

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Contour Lines.

- Individual contour interval.
- Problem: Large file of Danish Land Survey with 36 km\(^2\) → several days
- Solution: Split into tiles of 1km km\(^2\) → 6 minutes and merge contour lines afterwards!
Contour Lines.

- Problem: jagged contour lines
- Solution:
 1st use Douglas-Peucker Algorithm and
 2nd change into Bèzier Curve.
Contour Lines.

- **Problem:** differentiate depressions from hills
- **Solution:** Combine with hill shading picture
Hill Shading.

- Open hill shading as background map and vectorize the shape of terrain, like
 - trail and track network
 - ditches and depressions
 - hills
- The quality of the hill shading can differ due to the quality of the resolution.
- Experienced user can detect vegetation boundaries as well.
Contour Line vs. Hill Shading
Orthophoto.

- Open georeferenced orthophotos as a background map and vectorize vegetation edges.
- Quality can differ a lot, due to the date of the shot.
- Restriction due to shadow and stage of vegetation.
Vegetation Height Maps.

- Calculate difference from Digital Surface Model (DSM) and Digital Terrain Model (DTM) → Classify the differences.
- More distinct than orthophotos
Vegetation Height Maps.

Orthophotos vs. Vegetations Heights Maps (DSM minus DTM)
Vegetation Height Maps.

Orthophotos vs. Vegetation Heights Maps (DSM minus DTM)

Illustration: B. Imhof, U. Steiner
Cliffs

- Calculate slope map → Classify all slopes (pixels) more than 45°
Is this workflow useful only for orienteering maps?
Data of Official Survey in Switzerland.

11 Thematic Layers

- Survey marks
- Ground cover
- Single objects
- **Heights (DEM)**
- Nomenclature
- Properties
- Piping
- Boundaries
- Permanent erosion and mudflow
- Address of houses
- Administrative boundaries

Contour lines and hill shading are missing!

Source: www.cadastre.ch

OCAD AG
Mühlegasse 36
CH-6340 Baar / Schweiz
www.ocad.com

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Survey Map 1:10’000.

Raw data (DXF) Individual visualization With relief shading and toilets for dogs

OCAD AG
Mühlegasse 36
CH-6340 Baar / Schweiz
www.ocad.com

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Cartographic Workflow I.

1. Geodata available?
 - Yes/No

2. Capture
 - Surveying
 - Scanning old maps
 - LiDAR flights
 - Capture technical data

3. Import of data
 - Vector (Nat. GDB)
 - Raster data (WMS)
 - Digital elevation models
 - Technical data (DB, Lists)

4. Complete Geodata
 - GPS, Laser Range Finder
 - Orthophotos & DEM while vectorizing:
 - Contour lines
 - Road & tracks
 - Vegetation
 - Cliffs
 - Others
 - Open Street Map

5. Editing / Construction

Complete

OCAD AG
Mühlegasse 36
CH-6340 Baar / Schweiz
www.ocad.com

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Cartographic Workflow II.

6. Editing / Construction
- Editing Vectors
- Topological Adjustments
- Editing Raster
- Editing DB

7. Visualization
- Survey Maps
- Individual Visualization
- Generalization
- Text Placement

8. Export of Data
- Mobile devices
- GDB, WMS
- Web maps
- Printing

9. Added Value
- Survey Maps
- Routing (OSM)
- Course Setting
- O-maps

Integrating LiDAR data into a cartographic workflow, ICC Dresden 2013
Conclusion.

Laser Airborne Scanning has revolutionized orienteering maps very much:

Products:
- Contour lines
- Hill shading
- Cliffs
- Vegetation Height Maps

This manner to complete maps is not only practicable for orienteering maps, it is suitable also for other topographic maps.
Thank you for your attention!