Strabo: A Complete System for Label Recognition in Maps

Chiang and Craig Knoblock
Spatial Sciences Institute and Information Sciences Institute
University of Southern California

Motivation

- Maps are a rich source of geospatial data:
 - Easily accessible - you can easily obtain printed maps for many places around the globe (volume)
 - Many different types of information (variety)
 - Often contains information that cannot be found elsewhere (historical maps)

Strabo: Kadhi Tourist Hotel: Lat: 33° 20' N, Long: 44° 26' E
Abidali Mosque: Lat: 33° 21' N, Long: 44° 22' E
Road Vector Data:

From Scanned Image to GIS Usable Format

Opposition Vote for Proposition 1, the 1920 extension of California’s alien land law that prevented Japanese from owning or leasing land (Los Angeles, 1920)

Lon Kurashige, Southern California Quarterly, 2013 by The Historical Society of Southern California.
Harvesting Geographic Features From Heterogeneous Raster Maps

Raster Map

Text Layer (raster)

Map Decomposition

Road Layer (raster)

Carter Ave
N. Newstead Ave
E. Green Loo P.
Penrose St
Red Bud Ave
Fairgrounds Park Pond

Text Recognition

Road Vectorization

Road Intersection Extraction

Road Intersections

Road (vector)

Alignment

Road Intersections from a Georeferenced Sources

Various Toponym of the Same Place in Historical Maps of Different Time Periods

1921 Japanese

1935 Japanese

1992 ROC

1945 US Military

1986 Scottish Geographical Magazine

Map Processing Challenges

- It is difficult to unlock the geospatial information in raster maps:
 - There is limited access to the meta-data
 - They have overlapping features
 - They often have poor image quality
- Previous work is typically limited to a specific type of map and often relies on intensive manual work
Scanning and Compression Noise

- Raster maps may contain noise from scanning and compression process

Numerous Colors in Scanned Maps

- Manually examining each color for extracting features is laborious

 285,735 colors

 RGB Color Cube

Color Segmentation by Analyzing Color Space

- Analyze only color space for color segmentation does not work for feature extraction purpose
- Colors of individual features do not merge

 Each color is represented by a grayscale level
Color Segmentation with Spatial Information

- The Mean-shift algorithm
 - Consider distance in the color space and in the image space
 - Preserve object edges
 - Reduce the colors by 50%

- The K-means algorithm
 - Limit the number of colors to K
 - From 155,299 to 10 colors (K=10)

Supervised Extraction of Text Layers

- Use color segmentation to reduce the number of colors
- User provides examples of text areas for identifying text colors

Determine Text Colors

- Decompose a user label into images, each of the images contains one color
- Apply Run Length Smoothing algorithm (RLSA) to identify text colors

Run Length Smoothing Algorithm (RLSA)
RLSA Example

- A RLSA example using a 5x1-pixel window

After Erosion

- Decompose a user label into images, each of the images contains one color
- Apply Run Length Smoothing algorithm (RLSA) to identify text colors

After RLSA

Extracted Text Layers

- **Fourth Contribution:** Text Recognition
Text Recognition from Identified Text Layers

- Multi-oriented text labels
 - Characters can have various sizes

Identify Individual Strings

- Conditional Dilation Algorithm:
 - Expand the foreground area of the connected components (i.e., characters) when certain conditions meet
 - To determine the connectivity between the characters

Detect String Orientation

- Rotate a string from 0° to 180°
- Apply Run Length Smoothing algorithm
Recognize Characters in the Horizontal Text Strings

- Feed the horizontal text strings to a commercial OCR product
- Use the OCR returned confidence to determine the correctly oriented horizontal string
 - Number of suspicious characters
 - Number of recognized characters

Experiments

- Tested on 15 maps from 10 sources
- Tested the 15 test maps using an OCR product called ABBYY FineReader alone for comparison

Experiments (Cont’d)

- Strabo extracted 22 text layers using 74 user labels (avg. 3.36)
- Strabo extracted 6,708 characters and 1,383 words
- ABBYY FineReader extracted 2,956 characters and 655 words

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Char. P.</td>
<td>Char. R.</td>
<td>Char. F.</td>
<td>Word P.</td>
<td>Word R.</td>
<td>Word F.</td>
</tr>
<tr>
<td>Avg. (Strabo)</td>
<td>70.7%</td>
<td>67.9%</td>
<td>40.3%</td>
<td>49.2%</td>
<td>70.6%</td>
</tr>
<tr>
<td>Avg. (ABBYY)</td>
<td>71.89%</td>
<td>30.09%</td>
<td>42.17%</td>
<td>65.17%</td>
<td>29.6%</td>
</tr>
</tbody>
</table>
In Practice: Text Recognition on Nautical Charts

Extraction Precision/Recall

Time Requirement

Table 1. The required time for using Strabo for text recognition in the test map.

<table>
<thead>
<tr>
<th>Strabo Steps</th>
<th>User Time</th>
<th>Elapse Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Color Segmentation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2. Providing Text Samples</td>
<td>0:01:04</td>
<td>0:01:04</td>
</tr>
<tr>
<td>3. Processing the Text Samples to Extract Text Layers</td>
<td>0:00:00</td>
<td>0:00:11</td>
</tr>
<tr>
<td>4. Processing Text Layers to Identify Individual Text Labels</td>
<td>0:00:00</td>
<td>0:16:17</td>
</tr>
<tr>
<td>5. Executing ABBYY FineReader to Recognize Text Labels</td>
<td>0:00:00</td>
<td>0:04:47</td>
</tr>
<tr>
<td>6. Saving ABBYY FineReader OCR Results</td>
<td>0:00:00</td>
<td>0:16:55</td>
</tr>
<tr>
<td>7. Generating Shapefiles</td>
<td>0:00:00</td>
<td>0:18:59</td>
</tr>
<tr>
<td>Total Time</td>
<td>0:01:04</td>
<td>0:51:07</td>
</tr>
</tbody>
</table>

Table 2. The required time for post-editing in ArcGIS.

<table>
<thead>
<tr>
<th>ArcGIS Steps</th>
<th>User Time</th>
<th>Elapse Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Post-editing to Remove Incorrect Results</td>
<td>0:12:46</td>
<td>0:12:46</td>
</tr>
<tr>
<td>2. Post-editing to Add Missing Results</td>
<td>0:20:39</td>
<td>0:20:39</td>
</tr>
<tr>
<td>3. Post-editing to Verify Results</td>
<td>0:23:13</td>
<td>0:23:13</td>
</tr>
<tr>
<td>Total Post-editing Time</td>
<td>0:56:38</td>
<td>0:56:38</td>
</tr>
</tbody>
</table>
Positional Accuracy

<table>
<thead>
<tr>
<th>Label Count</th>
<th>917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Distance</td>
<td>0 (decimal degrees)</td>
</tr>
<tr>
<td>Maximum Distance</td>
<td>0.002296 (decimal degrees)</td>
</tr>
<tr>
<td>Distance Sum</td>
<td>0.01332 (decimal degrees)</td>
</tr>
<tr>
<td>Distance Mean</td>
<td>0.000015 (decimal degrees)</td>
</tr>
<tr>
<td>Distance Standard Deviation</td>
<td>0.000155 (decimal degrees)</td>
</tr>
</tbody>
</table>

Error Distribution

Error Distribution (Cont’d)
Related Work
- Work on one type of map (Fletcher and Kasturi, 1988; Bixler, 2000; Chen and Wang, 1997)
- Require training for each input map (Adam et al., 2000; DeSeilligny et al., 1995; Pezeshk and Tutwiler, 2010)
- Require manual processing to prepare each string for OCR (Cao and Tan, 2002; Li et al., 2000; Poudreux et al., 2007; Velazquez and Levachkine, 2004, ABBYY FineReader, 2010)
- Require additional knowledge of the input map (Gelbukh et al., 2004; Myers et al., 1996)

Conclusion: Contributions
- A general approach to recognizing text labels in heterogeneous raster maps
- Not limited to a specific type of map
- Handle raster maps with varying map complexity, color usage, and image quality
- Require minimal user input
- Outperform state-of-art commercial products with considerably less user input

Discussion and Future Work
- Strabo is an open source library
- We are working with the TerraGo Technologies to build a commercial package for text recognition on maps
- Current Implementation Limitation and Research extensions:
 - Current user interface takes only 4k-by-4k maps
 - Recognize languages other than English
 - Handle monotone, B/W maps
 - Will incorporate additional knowledge of the map region to improve text recognition
Thank You

Acknowledgement

The U.S. National Committee (USNC) to the International Cartographic Association

University of Southern California, Spatial Sciences Institute