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Abstract. Filtering is the most common approach to raster processing. In cartography and geographical information science it’s used for numerical generalization of surfaces, calculation of derivatives, edge detection and variety of other tasks concerned with image processing. The kernel that is used for filtering always has fixed size, which is defined once for the whole raster. However, rasters covering large areas contain all the distortions that are introduced by the projection in which the raster is stored. Examples are global digital elevation models, climatological and land cover rasters, middle- and low-resolution space imagery. Processing of such rasters with traditional filtering approach leads to the loss of geographical meaning and incorrect calculation of derivatives, as the same floating window covers different geographical neighbourhoods in different parts of raster. Raster statistics that are derived from the whole matrix of pixels are also biased by areal distortions. We present new approach to raster processing that applies affine transformation to filtering kernel that compensates for local projection distortions.
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Introduction
Raster data play an extremely important role in mapping and geographical information science. The most widespread areas of raster data model application are representation of continuous phenomena (various fields such as terrain surface, temperature, population density) and space imagery.
One of the default technologies of raster processing is filtering (McMaster Monmonier 1989).  Filtering exploits intrinsic topology of raster model that guarantees 8 (or 4 depending on the connectivity approach) neighbors for every raster cell except those located at raster boundary. Usually a raster kernel is centered above the pixel being processed and has a symmetric square shape with an odd number of pixels (3, 5, 7 etc.) along X and Y-axes. Sometimes circular, ring or wedge neighborhood is used and in some specific cases (mostly in raster morphology) a kernel can have even number of pixels and thus is positioned asymmetrically above the processed pixel (Li 1994).
De Smith et al. (2013) differentiates between linear and non-linear raster filtering. While linear filtering is based on convolution theory and calculates weighed average in every pixel’s neighborhood, a non-linear filtering is based on algorithmic analysis that cannot be expressed in terms of simple averaging. Several conceptual frameworks for raster processing have been proposed (Peuquet 1979, Li et al. 2001). Filtering has an important role in raster generalization. McMaster and Monmonier (1989) divide raster generalization tasks into four categories: a) structural generalization, b) numerical generalization, c) numerical categorization, and d) categorical generalization. They identified low- and high-pass filtering as means of numerical raster generalization.
Distortions in raster analysis received moderate attention so far. Steinwand et al (1995) revealed the effects of map projection on data quality.  Seong and Usery (2001) developed a scale factor model that is based on calculation of projection scale factors. They assesed them for cylindrical equal area, sinusoidal and Mollweide projections. Usery at al (2003) investigated map projection and resampling effects on the tabulation of categorical areas in global raster datasets. They revealed problems in projection engine of some commercial software that do not use the exact projection equations. They also compared areas calculated in spherical and planar coordinates and revealed that detailed resolution allows better preservation of areas. Mulcahy (2000) and White (2006) analysed pixel loss and replication patterns in eight projection of world maps. All authors emphasize that simplest sinusoidal projection performs very well in minimizing raster resampling (error due to the k=1 at all parallels). Finn et al (2012) developed a specialized program for handling map projections of small scale geospatial raster data. However, these investigations are mainly concerned with global effects of distortions.
Raster filtering with variable kernel shapes
We offer a variable kernel shape approach in which the convolution kernel is transformed at each pixel according to the local Tissot ellipse of distortion. In this case it is important that the initial kernel size should be defined not in pixels, but in raster projection units (meters).
The idea of using variable window in raster image processing is not new. For example, very high efficiency in image noise reduction can be achieved by adaptive median filtering, in which widow size is varied according to the variance of the values around selected pixel, which helps to filter only highly noised areas (Lin and Willson 1988). Moreover, filtering can be adapted to directionality of the noise (Dong and Xu 2007). Our idea is that raster filtering process could be adaptive to map projection distortions.
Map projection distortion elements (Snyder 1987) can be naturally interpreted as affine transformation parameters: Tissot indicatrix axes a and b for scaling and direction σ for rotation. Considering that the initial kernel parameters are supposed for the point p0 = (x0, y0) with zero distortions, the kernel coordinates u and v for an arbitrary point p = (x, y) can be transformed in the following way:

where parameters a, b and  are calculated at the current pixel using numerical or analytical solution. This transformation is only appropriate for symmetric kernels. 
If the resulting values should be mapped to the initial coordinates (for example, to reconstruct the function for the following analysis that requires regular grid of points), inverse affine transformation could be applied. 
The following algorithm based on affine transformation of convolution kernel is proposed:
1. Define initial shape of the kernel (commonly rectangular or ellipse) and its sizes in both X and Y directions
2. Calculate the extent of the raster in geographical units (degrees).
3. Sample raster area by the control points, which are equally spaced in degrees. Sampling distance is defined by user or can be calculated as a function of raster geographical extent and resolution.
4. Calculate the parameters of distortion ellipse at each control point using projection equations. 
5. Using distortion ellipse parameters, define the local matrix of affine transformation. 
6. Transform kernel coordinates.
7. For each pixel in the initial raster find the closest control point and assign its number to the pixel.
8. Process the whole raster using kernels from the assigned control points.
Implementation
An algorithm was implemented in a Java application  (Figure 1). The user opens raster and begins with setting a projection. The graticule is used to set the grid of control points. The less are the steps between parallels and meridians, the more precise (locally) will be the transformation of the kernel. The constructed graticule (in blue) defines the set of control points (at intersections). Each control point has its own zone. Control zones are highlighted in yellow. Finally, Tissot indicatrix is visualized in red.
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Figure 1. Raster processing application that implements variable kernel shape algorithm
Results
In our first experiment (Raposo and Samsonov 2014) we selected a combination of mean filtering and the Mercator projection. The Mercator projection’s linear distortions are calculated simply as m = n = 1/cos(B) at every point, where B is the latitude, and θ = π/2. Thus the kernel need only be scaled according to value of m. Control points were sampled each degree by latitude.
The source raster was a 5 km resolution DEM covering the European part of Russia. First, we processed the DEM using a 35×35 km (7×7 pixels) square kernel in a traditional, non-variable-kernel approach. Then we applied our variable kernel approach, with size varying from 7×7 pixels at 30° to 67×67 at 84°, always covering approximately the same 35×35 km area. Results of filtering show that our approach produces more geographically sound results than simple filtering. Compare the Kola peninsula in the northern part of the map and the Caucasus in the southern part (Figure 1). Enlarged terrain features at high latitudes appear to be generalized much less then southern territories by simple filtering. In contrast, application of a variable kernel shape smoothes features of the same geographical area, which can be important if the smoothing is performed for geographical analysis applications.
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Figure 2. Comparison between source DEM, filtered by fixed 7x7 pixel MEAN kernel and by variable shape 35x35 km kernel.
Distortions should also be taken into account for calculation of global raster statistics. While in the case of raster minimum and maximum all pixels should be considered, the mean and standard deviation characteristics should better be taken from a distortion-aware approach. In this case the field of areal distortion can be calculated. The weighted mean of all pixels could be calculated with each weight equal to the inverse of local areal scale factor. 
Conclusions
[bookmark: _GoBack]The presented variable kernel shape approach could be used in a raster processing tasks that call for more geographical approach — to cover the similar areas across large raster datasets during focal operations. Such tasks include the search for the geographical features if the same size, correct calculation of slopes and aspects, revealing of raster projection distortions through their emphasis (Mulcahy and Clarke 2001), various anisotropic filtering opertations. In our future investigations we plan to make an assessment of all distortion parameters as factors of filtering kernel transformation and their influence on results and raster statistics.
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