Accurate Geographical Distance Field Generation on the Ellipsoidal Earth and Its Application
Hu Hai*,  Jiang HuiPing*,  Wu YanLan**,  Yang Hui*
* College of Resources and Environmental Science, Wuhan University, 129 LuoYu Road, Wuhan 430079, PR China
** College of Resources and Environmental Engineering, Anhui University, 111 Jiulong Road, Hefei 230601, PR China
Abstract: The traditional method of ellipsoidal spatial analysis is to project the initial data on earth’s surface to the Euclidean plane and simulate approximately through Euclidean geometry. As earth’s surface is a anisotropic irregular ellipsoidal surface, the veracity of spatial analysis based on isotropous Euclidean plane cannot be guaranteed because of the large errors of computation. The present method is based on map algebra through raster-based geographical distance transformation which maintains the positioning accuracy of vector method as well as the neighborhood effect among cells of raster method. The computational efficiency the geographical distance transformation is O(m) where m is the number of pixels in the image, i.e., grid resolution, which is irrelevant to the quantity and morphology of spatial objects, therefore, this algorithm can control the positioning error around 0.001 m within several thousand kilometers range of span and consequently create the distance field in the geodesic metric system with a fairly high degree of accuracy. Products of the transformation mainly include 3 raster matrixes: ①the raster matrix of spatial distances: each element is the nearest geodesic distance between the center of each cell and the correspondingly nearest spatial object; ②the raster matrix of source objects: the codes of the correspondingly nearest spatial object; ③the raster matrix of source coordinates: the geodetic coordinates of the correspondingly nearest point on the source spatial object. A series of basic products of ellipsoidal spatial analysis can be generated via the accurate distance field on the ellipsoidal surface. As a kind of space-oriented computing tool at a large scale, the geographical distance field is capable of shifting a large proportion of spatial analysis algorithms from the Euclidean plane to the earth ellipsoidal surface without loss of accuracy, thus playing a crucial role in suitable allocation and utilization of resources through Tobler's First Law of Geography (TFL). In conclusion, the method will have a broad prospect of application for Digital Earth.
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1. Introduction

Along with the quickened pace of the globalization process and the rapid increase in the amount of spatial data, the requirements for spatial analysis with big data at large scale are growing even more urgent. The geographical information science in this new century is faced with quite a number of challenges: ①the performance of spatial computation on the ellipsoidal earth needs to be further enhanced; ②the amount of spatial data is becoming bigger and bigger; ③the interrelations of different spatial objects is growing increasingly complicated; ④the metric space needs to be extended to non-Euclidean space, e.g., the ellipsoidal earth space, 3-dimensional space and even the higher dimensional space. 
Traditionally, the object-based modeling approach is often used to model geographical objects in geographic information system, which takes Cartesian coordinate system as its spatial reference system in the 2-dimensional space, i.e., projection plane. On the one hand, the object-based model applies the Euclidean geometry theory as basic mathematical tools; hence, it could ignore the influence of the curvature of earth's surface at a regional rather than global scale. On the other hand, the object-based model focus on the independent geographical objects (Goodchild 1992), which breaks the connection among different spatial objects in the geographical space, and as a consequence, the interrelations of different spatial objects are very difficult to rebuilt in the spatial analysis. Particularly in the ellipsoidal earth space, these algorithms of object-based model turn out to be very hard to design and realize.
Currently, accurate spatial analysis on the ellipsoidal surface can be applied for maritime delimitation at a large scale. The point to point (PTP) method is a classic way to generate maritime boundaries. Its main and only function is the computation of intersections between geodesics (Carrera 1987). The watering method is an alternative way to delimitate maritime limits by tracing lines at a constant distance from other lines with a medial-axis transformation (MAT) (Christensen 2002). The computational geometry method is represented by the generation of median line / equidistance line based on Voronoi diagrams (COSQUER 2003). All the methods described above could not grantee both the calculation accuracy and the calculation efficiency when dealing with the massive spatial data with arbitrary complex morphology in the real geographical space.
The other way different from the object-based method to model the real world is the field modeling approach. Including the regular square grid points, the irregular dispersed points, irregular triangle networks, contour lines and so on, there are many kinds of data structure commonly used to model the geographical space from the perspective of field modeling. In this paper raster image is employed to represent the ellipsoidal earth space for spatial modeling. The regular square grid cells in a raster image are adjacent to one another, which is more suitable for maintaining the intrinsic neighboring properties of geographical space than the object-based modeling, just as it is said that “every thing is related to every thing else, but nearby things are more related than distant things” (Tobler 1970).
    In this paper, based on map algebra theory the working process of applying the accurate geographical distance field generated on the ellipsoidal earth to solving the spatial problems can be described as below: firstly, model the specific spatial problem by field modeling; secondly, conduct the geographical distance transformation and create the geographical distance field with a high degree of accuracy; thirdly, parse distance information, allocation information and the source point information according to 3 products of the geographical distance transformation described later in Section 2.2; finally, interpolate and approximate the accurate results of spatial analysis such as buffers, Voronoi diagrams and convex hulls on earth ellipsoidal surface by means of numeric calculation.
2. A Space-oriented Geographical Distance Field
In the preliminary work of the authors’ research group, the map algebra theory has been deeply used to solve spatial problems on ellipsoidal earth surface. Map algebra, based on the model of field, has its own special features and characteristics in spatial analysis. In terms of field modeling approach, space itself becomes the study object; as a consequence, some spatial problems, which exceeding the capabilities of Euclidean geometry theory, show the very possibility of being solved from the space-oriented perspective. Distance field and its generation method are the core contents of Map Algebra (Hu 2008).

2.1. The Features of Map Algebra (Hu 2008)
Field model in map algebra uses a uniform data structure, the grid cell set, to express any type of geometrical shapes. No matter how large amount of data and how complex morphology the geometrical shapes have, spatial objects such as points, lines or polygons are all organized as grid cell set in field model. In terms of the design and implementation of the practical algorithm, cell is the only data structure to be considered. What especially matters is the different forms of distance calculation between all kinds of spatial objects (from point to point, point to line, line to line, etc.) are unified into the only form, the distance from cell to cell.

The geographical space is an infinite set from the perspective of set theory. Based on field model, the space is divided into finite grid cells so that it becomes possible to solve spatial problems through the method of spatial enumeration. Therefore, the theorems in Euclidean geometry could be no longer relied on. For example, the equidistant line is able to be determined by checking the distance of every grid cell from every spatial object in the target geographical space; nevertheless, its calculation should be based on the solution of perpendicular bisector from the space-oriented perspective.

Basically, the algorithms in map algebra can be easily extended to non-Euclidean space, especially the ellipsoidal earth surface and 3-dimensional space. Most of them (local, focus, zonal, and global) (Tomlin 1990) have the computational efficiency as O(m), where m is the number of pixels in the image, i.e., grid resolution, which is almost irrelevant to the quantity and morphology of spatial objects. Therefore, all algorithms based on map algebra could be considered as a space-oriented method package.

2.2. Concept of Distance Field
When it comes to solving a spatial problem based on field rather than object-oriented model, regarding the space itself as study object and taking the geographical objects as characteristic values of the located grid cells are very important. Therefore, distance field reflects the distance relationship between any position and its nearest object in the geographical space, i.e., characteristic of the space. The following 3 field functions could be used to describe distance relationship.

The most important one we call it Distance Field:

Fielddis(x, y) = min{distance((x, y), obji), obji∈{ geographical objects}}     (1)

In distance field, every position records the minimum distance from the nearest object to itself. Distance field reflects the intensity of the relationship.

The second one is called Allocation Field:

Fieldaloc(x, y) = { obji , distance((x,y), obji) = Fielddis(x, y)}                (2)

Every position of Allocation Field is marked with the id of nearest object. Allocation Field reflects the influence scope of objects.

The third one is called SourcePoint Field:

Fieldsrc(x, y) = {(xsrc,ysrc), distance((x,y), ( xsrc,ysrc)) = Fielddis(x, y)}         (3)
SourcePoint Field records the exact nearest characteristic point belong to the nearest geographical object. 
It should be specially explained that the built-in function “distance” means an abstract function belong to a predefined space, not the specific Euclidean distance.

This paper employs raster as the data structure to realize field model. Every grid cell in the raster image logically contains a square space, which represents not only the real region with the shape of square but also the region with arbitrary shape such as a piece of 2-dimensional longitude and latitude grid curved surface on the ellipsoidal earth. The geometric center of the cell is picked out to represent the cell itself in distance computation as source or target point, just as shown in Figure 1.
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Figure 1. The center point of a grid cell used to represent the cell itself.
2.3. Distance Field with Geodesic Metric 

It demonstrates a general distance field with the metric function as the abstract function “distance” in Section 2.2. When this abstract function is replaced with the specific function, geodesic distance, the distance field becomes a geographical distance field with geodesic metric.

In this paper, World Geodetic System (WGS) 1984 is used as its geodetic datum and the algorithms of Bessel’s direct and inverse problems for the solution of geodetic problem (Karney 2013) are introduced to guarantee the computation precision in long and medium geodesic distance application in order to make the spatial analysis globally possible.
3. Geographical Distance Transformation
3.1. Generation of Distance Field with Geodesic Metric
The method of spatial enumeration provides basically an accurate way to generate geographical distance field, which could be realized easily by visiting all grid cells in the target space. For each grid cell, calculating the distance between the center point and the corresponding source object is necessary. The minimum distance can be acquired from the distance field; the code of source object can be acquired from the allocation field; and the coordinates of the nearest point on source object can be acquired from the source point field. However, this initial calculation is extremely time-consuming, especially with geodesic metric. Simply analyzing the enumerative method, it could be found that the computational efficiency is O(n*m), where m is the number of grid cells in the space and n is the number of all characteristic points of the spatial objects. That means this enumerative method is greatly dependent on the number and morphology of geographical objects.
For the purpose of realizing a space-oriented method, this paper uses the geographical distance transformation that had been proposed by the author (Hu 2014) to generate distance field. The geographical distance transformation proceeds as follows (Hu 2014):

Step 1: Create an image where the foreground is composed of all Voronoi generators and the background is composed of the other pixels. Then initialize the distance map by assigning the value of pixel(i , j), denoted as Dij, if pixel (i , j) is a foreground pixel, Dij is 0; otherwise, Dij is a sufficiently large value K. 

Step 2: Sweep the image forward and update the value of each pixel by comparing with its neighbors in Figure 2:

for (i = 0; i < m; i++)

for (j = 0; j<=n; j++)  

Dij = min{Dij, R ij(p1), Rij(p2), Rij(p3), Rij(p4)} 
Step 3: Sweep the image in reverse order and update the value of each pixel by comparing with its neighbors in Figure 2:
for (i = m-1; i >= 0; i--)

for (j = n-1; j>=0; j--)  

Dij = min{Dij, R ij(p5), Rij(p6), Rij(p7), Rij(p8)}
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Figure 2. The neighborhood template of a cell
3.2. 3 Products of Geographical Distance Transformation
The products of the geographical distance transformation mainly include 3 raster matrixes: ①the raster matrix of spatial distances just defined as Equation (1): each element is the nearest geodesic distance between the center of each cell and the correspondingly nearest spatial object; ②the raster matrix of source objects just defined as Equation (2): the codes of the correspondingly nearest spatial object; ③the raster matrix of source coordinates just defined as Equation (3): the geodetic coordinates of the correspondingly nearest point on the source spatial object. The formal definition of geographical distance field, allocation field and source point field are discussed in Section 2.2 elaborately. Collectively, 3 raster matrixes make up what is called geographical distance field, on which comprehensive distance analysis with geodesic metric on ellipsoidal surface is based.
The raster matrix of spatial distances depicted in Figure 3 records the distance information, whose element indicates the nearest geodesic distance between the center and the correspondingly nearest spatial object for each grid cell. The raster matrix of source objects depicted in Figure 4 records the allocation information, which is very important in determining the boundary grid cells of the geographical distance field. The raster matrix of source coordinates depicted in Figure 5 records the source point information that identifies the geodetic coordinates of the correspondingly nearest point on the source spatial object for each grid cell.
[image: image3.png]


[image: image4.png]


[image: image5.png]Point

Polygon

Grid Cell

& Source
Point

The
Nearest
Spatial
Object





Figure 3 Matrix of Distances     Figure 4 source objects      Figure 5 source coordinates

The raster matrix of spatial distances, the raster matrix of source objects and the raster matrix of source coordinates are all indispensible in the constitution of the geographical distance field. With a focus on spatial interrelations and interactions by distance in the geodesic metric space, the geographical distance field can be used to facilitate spatial data mining and reveal the spatial distribution patterns.
3.3. Results and Error Discussion
The results of the geographical distance transformation is the 3 raster matrixes as above, which contains all of the information related to distance in the geodesic metric space. The computation of geographical distance field is built on the solution of geodetic problem among the centers of each grid cell. Since the calculation error of geodesic distance could be controlled less than several cm within 20 thousand kilometers range of span (Xiong 1988), the computation precision is guaranteed consequently, i.e., the products of geographical distance transformation could be used to carry on spatial analysis globally due to a high degree of accuracy. 
In practical applications, geographical distance transformation always returns geographical distance which is typically a floating-point number. One may consider rounding the floating point values to integers to obtain an integer distance image (Hu et al. 2014). Given that the existence of round-off error is inevitable under the condition that raster structure is adopted when conducting the geographical distance transformation, the initial results coming directly from the geographical distance field is no more than 0.5 row span or column span of the grid cell. However, after determination of the boundary grid cells of influence zone, e.g., allocation unit or buffer, more accurate results could be acquired easily through interpolating and approximating with the help of numerical computation. Therefore, theoretically the strict requirements of grid resolution for the traditional raster-based method could be reduced via the raster & vector-based method. The consequences are the computation efficiency can be enhanced significantly.
4. Applications of Geographical Distance Field
4.1. Voronoi Diagram and the Equidistance Line
Voronoi diagram is the geometrical structures constructed from a set of elements given in a same metric space. When the elements of the given set verify some finite properties, e.g., when they are separate points, or whole segments etc., it happens that Voronoi diagram can be defined as points minimally equidistant from the elements (Okabe et al. 2009). This is synonymous indeed with the definition of the equidistance line, every point of which is equidistant from the nearest points of the baselines. In other words, once the geometrical elements of the baselines are given, their Voronoi diagrams coincide with the equidistant lines (COSQUER 2003).
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Figure 6. The construction of Voronoi diagrams based on geographical distance field.
Figure 6 shows 34 major cities on both sides of Atlantic and their Voronoi diagrams on the ellipsoidal earth surface. The positioning error of corresponding Voronoi vertexs could be controlled less than 0.001 m within several thousand kilometers range of span by numerical computation based on geographical distance field. 
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Figure 7. The generation of the equidistant lines based on geographical distance field.
As shown in Figure 7, the original coastlines are highlighted and the deep blue lines indicate the generation results of the equidistance lines based on geographical distance field. The grid resolution adopted by the geographical distance transformation is 1000×1000. Though the whole calculation process spent more or less 20 seconds with the time of geographical distance transformation and numerical computation both included, the computation efficiency could be considered relatively high, given that 4 coastlines are made up of around 30000 vertices. As regards watering method, with a RISK machine, such as the entry model of the IBM RS6000 series, the planar computation of the boundary of the Exclusive Economic Zone took approximately 20 minutes for a shoreline with 2000 vertices (Christensen 2002). In conclusion, the novel method based on geographical distance field has huge advantages over the watering method in computation efficiency when it comes to the generation of the equidistance lines on the ellipsoidal earth.
	the number of points
	mean (m)
	standard deviation (m)

	1829
	0.065447567
	    0.0441974321


Table 1. Calculation accuracy analysis of the algorithm based on geographical distance field.
As shown in Table 1, the generation results of the equidistance lines based on geographical distance field are relatively accurate. The equidistance lines consist of 1829 interpolation points. The positioning error of every interpolation point is controlled within 0.1 m by and large, the mean is no more than 0.07 m, and the standard deviation is less than 0.05 m. In short, the computation precision of the equidistance line generation on the ellipsoidal earth could be guaranteed at the regional and global scales.
4.2. Buffer and Limit at a Fixed Distance from the Baseline
The limit at a fixed distance from the baseline is essentially the buffer boundary on the ellipsoidal surface. Hence, the precision of buffer generation contributes directly to the accuracy of many outer limits, which consist of lines where each point is located at a fixed distance from the territorial sea baseline. Due to the fact that the Earth is not flat and that all projections result in some distortion, it is said that limits that are more than 24 nautical miles from the baselines should always be derived by geodetic techniques in order to take into account the curvature of the Earth. 
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Figure 8. The generation of 200 nautical miles buffer based on geographical distance field.
 Figure 8 shows two different results of 200 nautical miles buffer derived respectively by geodetic techniques and purely graphical means with ArcGIS 9.3 as well. The former process of generation is conducted on the ellipsoidal surface, whereas the latter one is conducted on the projection plane. The outermost black line signifies the result based on geographical distance field and the very slight gray border line indicates the result using traditional method. Obviously the results vary wildly between different methods. From theoretical and experimental discussion, the former one has the huge advantages over the latter one in both computation accuracy and computation efficiency.
4.3. Convex Hull
The bi-directional buffer method based on geographical distance field has a few good features such as keeping the convex parts and narrowing the concave ones, which can be used in determining convex hull of complex geometry data set on the ellipsoidal surface. Through bi-directional buffer transformation, the original data set could be greatly compressed. In the meantime, the efficient point set can be acquired, which consist of all the convex points. The convex hull could be finally determined by extracting the efficient point set.
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Figure 9. The determination of the convex hull based on geographical distance field.
Original data contains complex geometry set of points, lines and planes within dozens of thousand kilometers range of span. There are 398112 points in this complex geometry set. Through bi-directional buffer transformation, an efficient point set with 486 points included can be obtained, whose compression efficiency is as high as 99.88%. After that, the valid convex hull could be determined by filtering the efficient point set just as shown in Figure 9.
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Figure 10. Time complexity analysis of the algorithm based on geographical distance field.
Under the condition of the grid resolution adopted by geographical distance transformation being set to 1000×1000, it took no more than 10 seconds to solving the determination of convex hull on a personal computer with Intel Core 2 Duo E7500 processor and 4 G memories. When the number of points in the original geometric shape increases from 10,000 to 400,000, the quoted elapsed time accordingly increases from 6 seconds to 9 seconds, which indicates that the algorithm is not content-related due to its space-oriented characteristic, just as shown in Figure 10. Therefore, the spatial analysis method based on geographical distance field is especially appropriate for big data with arbitrary complex morphology on the ellipsoidal earth.
4.4. Coastline Generalization
Coastlines are the boundaries between the land and the sea in nautical charts. There is a principle of land expansion and simultaneous sea decrease that must be observed in the coastline generalization, i.e., the cartographers should reserve the morphological characteristics of the promontory and neglect the small bay landform at the same time when generalizing coastlines.
As mentioned in the previous section, there are three products of the geographical distance transformation and one of them is the raster matrix of source coordinates: the geodetic coordinates of the correspondingly nearest point on the source spatial object. Through determining the boundary grid cells of the buffer, all source coordinates could be easily traceable based on the geographical distance field, thus distinguishing among the coastlines every small bay, whose mouth is less than generalization scale by length. After that, these identified bays should be classified and the pristine coastlines could be simplified consequently.
Figure 11 shows the results of the coastline generalization based on geographical distance field. Figure 11-a shows the morphological characteristics of the pristine coastlines and the map scale is 1:70 k. Figure 11-b shows the coastline landform after generalization and the map scale is 1:250 k. The generalization scale is 1250 m in this case.
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a. Coastlines with a scale of 1:70 k.      b. Coastlines with a scale of 1:250 k after Generalization.
Figure 11. The coastline generalization based on geographical distance field.
As can be seen from the figures above, after the coastline generalization method based on geographical distance field is adopted, the coastlines at 1:250 k scale not only reserve the morphological characteristics of the original coastlines at 1:70 k scale on the whole, but also satisfy the requirements of land expansion and simultaneous sea decrease.
5. Conclusion
As regards the massive data with arbitrary complex morphology, this method is capable of rapidly computing the ellipsoidal buffers, Voronoi diagrams, Delaunay triangulation net, central axis, skeleton lines, etc., which has been applied to the solution of accurate maritime delimitation. As a kind of space-oriented computing tool at a large scale, the geographical distance field is capable of shifting a large proportion of spatial analysis algorithms from the Euclidean plane to the earth ellipsoidal surface without loss of accuracy, thus playing a crucial role in suitable allocation and utilization of resources through Tobler's First Law of Geography (TFL). In conclusion, the method will have a broad prospect of application for Digital Earth.
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