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Abstract. Road density is a widely used index in the analysis of ecological effects, road network planning, delimitation of urban areas and road network selection. To evaluate results of road network selection, many indexes are being used, such as using similarity to evaluate the length similarity of road networks before and after selection, using connectivity to measure the connectivity of retained road networks, and using visual inspection to visually check whether the road network pattern is preserved. However, little attention has been paid to use density to evaluate results of selection. Although mesh-density based approach and the recently proposed combination of stroke-mesh approach can retain the road network density difference, these methods did not use density to evaluate results of selection. This paper proposes a road density partition method based on skeleton partition of road network and the idea of spatial autocorrelation. Firstly, constrained Delaunay triangulation is applied to the road segments and skeletons are generated. Then, approximated Voronoi cells of each road segment are formed based on these skeletons. Secondly, Getis-ord Gi* is used to identify statistically significant spatial clusters of high and low values of cellular area. Finally, the neighboring cells are aggregated based on the statistically significant spatial clusters of high and low values. The road network data of Hong Kong Island was obtained from OpenStreetMap, and Google Maps was referenced to select roads at different scales for the evaluation of road network selection. The result shows that the densities in the experimental partitions by and large match the road network density in reality, and well reflect the road density contrast before and after selection. Additionally, the result shows that this method is better compared with grid density method.
Keywords: road network selection, density, skeleton partition, spatial autocorrelation, Getis-Ord’s Gi*
1. Introduction

The level of detail varies on maps of different scales because the available space for delineating objects is limited. To avoid congestion and conflict between cartographic objects when the map scale is reduced, objects have to be selectively omitted, simplified and displayed. That is exactly the job of cartographic generalization, a process that requires that the main characteristics and the logical pattern of those objects are preserved. Density is one of those main characteristics. Although it is unpractical to preserve all the nuances in local densities, the density contrast should be preserved; that is, after generalization, regions with a relatively higher density should still be the dense regions, not the converse. 
Roads are one of the most important cartographic objects. Existing automated road selection methods can be classified into four categories, according to the difference between the methods of network simplification. The first category is road intersection selection/aggregation, which involves selecting roads by selecting or merging road intersections (Bjørke 2003). The second is road meshes merging, which starts from the place where the constraint conditions are not met, and calculates the importance degree of the segments that constitute meshes or calculates the influence after merging meshes and then selectively removes less important road segments to make new meshes (Peng & Muller 1996, Edwardes & Mackaness 2000, Chen et al. 2009, Touya 2010). The third is road omission/selection, which involves eliminating those road units that are less important and preserving the road units that can reflect the thematic function of networks (Mackaness 1995, Richardson & Thomson 1996, Thomson & Richardson 1999, Jiang & Claramunt 2004, Jiang & Harrie 2004, Zhang 2005, Tomko et al. 2008, Liu et al. 2010, Yang et al. 2011). The fourth is the recently proposed stroke-density combination algorithm (Li & Zhou 2012, Weiss & Weibel 2014). For the indexes to evaluate road network generalization methods, there exist three measures: Similarity, Connectivity and Visual Inspection. Similarity evaluates the similarity between road networks before and after generalization; Connectivity measures the retained road network's connectivity, and Visual Inspection visually checks whether the road network pattern is preserved or not (Li & Zhou 2012). Since density is a main characteristic of cartographic objects, another evaluation index is whether the generalization result has preserved the density contrast and how well it has done so. Some pioneer works proposed the concepts of mesh density (Chen et al. 2009) and skeleton density (Liu et al. 2009) in road selection. However, these were used to identify the regions where spatial conflicts lie and determine the importance of road segments, rather than to evaluate the selection result.
As a kind of high order information, road density is not only used in cartographic generalization but also widely applied in other domains, such as in the analysis of ecological effects (Hawbaker et al. 2005, Cai et al. 2013), road network planning (Yang et al. 1996), and delimitation of urban zones (Borruso 2003). Existing methods for calculating road density include traditional density (Hawbaker 2004), grid density (Borruso 2003), kernel density (Borruso 2003, Cai et al. 2013), mesh density (Chen et al. 2009) and skeleton density (Liu et al 2009, Liu et al. 2010), based on three statistical units: road intersections, road segments and road meshes. The aforementioned computation methods for road density can be primarily divided into two categories. One is to first divide the whole area into several regions and then, in each region, calculate the ratio between the road length and the area of the region, consistent with the traditional density definition. The other is to calculate the density of one road segment or one mesh. The division in the former category is arbitrary and some important parameters such as the grid resolution are not easy to determine. Additionally, the divisions usually do not reflect the density distribution. The latter does not represent the density of an area since what it calculates is the density of one segment or mesh, so it differs from human perception of dense areas and sparse areas. Skeleton density, proposed by Liu et al. (2009), can reveal the overall road distribution, yet the road network was not partitioned explicitly. This paper proposes a density partition method based on skeleton partition of road networks and applies it to the evaluation of road network selection results.

The rest of paper is structured as follows. Section 2 describes the method for density partition based on skeleton partition and Getis-Ord’s Gi*. Section 3 presents the experiment and the application in evaluation of road network selection. Conclusions are drawn in section 4.
2. Methods
Inspired by the extraction of the “natural city” based on the spatial autocorrelation of the cells made by a road network (Jiang & Jia 2011), this article proposed a density partition method based on spatial autocorrelation. In this method, the skeleton of the road network partitions the whole studied area into polygons, which are similar to Voronoi cells. Visually denser regions of the road network correspond to clusters of small Voronoi cells, whereas sparse regions correspond to clusters of large Voronoi cells. The method consists of two steps. First, the approximate Voronoi diagram of the road segment is generated based on the skeleton, to partition the entire area. Then, the high-value and low-value clusters that are statistically significant are extracted based on the index of local spatial autocorrelation, Getis-Ord’s Gi*. Since it is the area of Voronoi cells that is considered, the extracted low-value clusters correspond to denser road network regions, and the extracted high-value clusters correspond to the sparse regions. The Voronoi cells corresponding to neighboring low-value areas and neighboring high-value areas are merged respectively, thus finalizing the road network partition.
2.1. Skeleton partition of road network
First, constrained Delaunay triangulation is applied to the road segments, and then skeletons are generated. Following this, approximate Voronoi cells can be formed based on these skeletons (Liu et al. 2009, Liu et al. 2010). As an example, part of the road network of Hong Kong and the corresponding skeletons are shown in Figure 1. 
2.2. Density partition based on Getis-Ord Gi*
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The high-value cluster areas of road segments (small-area Voronoi cell clusters) correspond to areas with dense road distribution, whereas the low-value cluster areas (large-area Voronoi cell clusters) correspond to areas with sparse road distribution. This indicates local spatial autocorrelation. Getis-Ord Gi* is a common statistic to describe local spatial autocorrelation. It tells where statistically significant features with either high or low values cluster spatially (Getis & Ord 1992, Ord & Getis 1995, Esri 2013). The Gi* statistic returns a z-score and a p-value for each feature (each cell in this work). The z-scores are equal to the ratios between the deviation from the observed value to the expected value and the standard deviation; the p-values are probabilities that a random process created the observed pattern. When the absolute value of the z-score is large and the p-value is small, there exists a high value spatial clustering. Otherwise, when the value of the z-score is small and negative and the p-value is large, there exists a low value spatial clustering. The larger (or the smaller) the z-score, the greater the degree of clustering. If the value of the z-score is close to 0, there is no obvious spatial clustering (Getis & Ord 1992). In general, a 95% confidence level is chosen for statistically significance test. The detailed calculation is as follows:
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in which Gi* is actually a z-score (Esri 2013); xj is the area of the jth Voronoi cell; 
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is the mean value of the areas of all the Voronoi cells; wij is the weight of the Voronoi cells i and j. The weight used in this paper is based on a constant distance threshold; i.e. the weights between one Voronoi cell and other cells within a certain distance are all 1, while the weights for cells beyond this distance are all 0. n is the number of cells and is also the number of road segments. 
A key problem is determining the distance threshold. According to ArcGIS Help (Esri 2013) and some successful cases (Truong & Somenahalli 2011), the criteria to choose an appropriate distance threshold is as follows: (1) Make sure that each element has a neighbor; and (2) If the area of Voronoi cells is not normally distributed, make sure that each element has eight neighbors. According to the above criteria, in our experiment, the smallest distance to ensure that every element has a neighbor is 600m.

After acquiring the statistically significant clusters with high and low values based on Getis-Ord’s Gi*, the study utilized terminology in the textbook (Wang et al. 1993) and merged those neighboring cells which corresponded to statistically significant low value zones (Gi*<-1.96) at a confidence level of 95%; these cells are dense regions. Then, the study merged those neighboring cells that corresponded to regions that did not have statistical significance (-1.96≤Gi*≤1.96) at a confidence level of 95%; these cells are medium density regions. In the end, the study merged those neighboring cells that corresponded to statistically significant high value zones (Gi*>1.96) at a confidence level of 95%. These cells are sparse regions.
3. Application of the Proposed Method in Evaluating Road Selection 
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Data and experiment methods
The purpose of the experiment presented in this section is to validate whether the proposed density partitioning method correctly reflects the variation of road density, before and after road selection. The experiment also assesses whether the proposed method can be used to evaluate the quality of road selections. This experiment used road network data at multiple scales. The road network data of Hong Kong Island was obtained from OpenStreetMap (OSM), and Google Maps was referenced to select roads at different scales (Fig. 2).
The experiment was performed by the following procedure: 

(1) Perform density partitioning to the data with the most detailed scale, using the proposed method.
(2) After partitioning, calculate the road density of each partition, based on the ratio of the total length of roads in this partition to the total area of this partition. Check if the density of each partition is in proper order, i.e. dense, medium and sparse regions have a highest, medium and lowest road density, respectively.

(3) Partition the multi-scale data based on the partitioning result of step 1, and calculate the road density of each partition.

(4) Determine whether the density variations of the multi-scale data are in accordance with the principles of map generalization. The principles, in terms of the density contrast plot before and after road selection, include the following: a) for the same area, density decreases; b) for denser areas, the decrease is more significant; c) there is no major reverse of the density curve.
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Results and comparison
Figure 3 shows the partitioning result of the level 14 road network. The small-area regions produced because of boundary effects are marked by ellipses (Fig. 3a). To eliminate the impact of boundary effects, the small-area regions were merged to their neighboring regions; this helps to filter clutter in the partition result. Fig. 3b shows the final partition result. As seen in this figure, the resultant dense and sparse regions are generally consistent with visual perception.
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Figure 4 shows the density variation comparison among the road networks, represented in three scales, partitioned according to Fig. 3b. As can be seen, for the same region, the density value decreases (the level 12 density curve is below the level 13 density curve, and they both are below the level 14 density curve). Only one of the regions has a reversed density after road selection (the three density curves have similar shapes and fluctuations, except for Region 6 in level 12). The density of the denser regions decreased more significantly than the medium density regions, and both decreased more than the density of sparse areas. Although a certain level of evening is produced, the density decrements are acceptable; this can be seen through comparison with Fig. 2. Overall, the density regions partitioned with the proposed method well reflect the density variations of the road network at multiple scales.
The proposed method was compared with the grid density method. The reason to choose the grid density method was that it produces explicit partitions, which is not a feature of the kernel density, mesh density or skeleton density methods. The grid density partitioning result is shown in Fig. 5; two resolutions were chosen, one close to and one greater than the number of partitions of our method. As seen in Fig. 5, the reversed densities of certain regions occurred in a 4-by-4 grid (Regions 7 and 8; 13 and 14), and the density difference was truncated in a 3-by-3 grid (Regions 1 and 4; 6 and 7). In addition, the partitions produced by the grid density method do not show a clear difference among dense and sparse regions. When the resolution is close to the number of partitions of the proposed method, the trends of the three density curves are more similar. Therefore, the proposed method is superior to the grid density method, while simultaneously overcoming the latter’s problem of sticky resolution determination. 
4. Conclusion
This paper proposes a method for road density partitioning. The method first generates skeletons for road segments and then extracts high value clusters and low value clusters of approximate Voronoi cells using Getis-Ord’s Gi* based on the idea of local spatial autocorrelation; finally, associated with a 95% confidence level, it merges those cells that correspond to the high value and low value regions to implement the partition.

This method does not use regular meshes or administrative divisions but the characteristics of the road itself to implement the partition, and the shape of each zone is irregular. Experiments on Hong Kong Island level 12, 13 and 14 road network data were carried out. Density calculation and comparison analysis indicated that the method correctly reflected the road density contrast before and after generalization.

The proposed method has boundary effects. The boundaries of the data used in the experiments are assumed to be rectangles, which are often not natural boundaries. Thus, further studies should focus on the boundary revision.
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Figure � SEQ Figure \* ARABIC �1�. Part of Hong Kong road network and corresponding skeletons.
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(a)                                                    (b)                                                     (c)


Figure 2. Road network of Hong Kong Island. (a) level 14 (b) level 13 (c) level 12
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(a)                                                                                          (b)


Figure 3. Partition result. (a) before merging (b) after merging
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Figure 4. Road density contrast before and after road selection using the proposed method.
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(c)                                                                    (d)


Figure 5. Road density contrast before and after road selection using the grid density. (a) 3*3 grid; (b) 4*4 grid; (c) road density contrast using 3*3 grid; (d) road density contrast using 4*4 grid
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