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Abstract. In this paper, several unsupervised machine learning algorithms were explored to define homogeneous regions of concentration of uranium in surface waters using multiple environmental parameters. Primary environmental parameters were identified using several spatial statistical methods explored in the previous study. At this step, cluster analysis was carried out using techniques of bivariate local pattern analysis, spatially contiguous clustering of multivariate data or unsupervised learning, and techniques from the domain of artificial neural network. Combining techniques of data-based and model-based classifications of geological, climatic, and other environmental indicators coupled with spatial statistical analysis allowed to identify six regions of distribution of natural radioactive elements in groundwater in Ukraine.
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Introduction
One of the main components of ecological conditions in Ukraine is the radioactivity of natural waters associated with natural and anthropogenic factors. Among developed countries, conducting basic research on this issue, Sweden, Finland, and Canada have geological structure similar to Ukraine as they are all located on the Precambrian crystalline shields - Baltic and Canadian. The natural radioactivity and groundwater contamination is studied in the areas of extraction and processing of minerals, including uranium and oil. Natural radioactivity of oil and gas was first registered in 1904 in Canada, and further found in many places worldwide (Schneider 1990, Makarenko 2000).
Radio-ecological condition of underground water if often considered as a threat to the human’s health, so identification of areas with high level of radioactivity, based on spatial statistics and geological surveys and analyzes, is an important research task.
Ukraine is located in the central and south-east of Central Europe with the population about 47 million people. It spreads from the south-west of the East European Plain, through Ukrainian Carpathians and the Crimean Mountains, with its shores in the south washed by the Black and Azov Seas. About 95% of the country is relatively flat (with average elevation about 170m), and the Carpathians and Crimea Mountains occupy about 5% of its territory.
Ukraine is located within the two major tectonic structures - the East European platform and the Alpine geosynclinal (folded) region. The plateau part of Ukraine is a rigid, slightly shifting tectonic structure with the ancient crystalline rock covered by sediments (sand, clay, limestone, etc.). The Alpine geosynclinal region is dominated by sedimentary rocks. The system is relatively young (25-100 million years) and exhibits intense tectonic movements. 
Ukraine has a complicated geological structure comprising genetically related geo-structural regions. Ukraine is divided into several main geostructural regions: the Ukrainian Shield, Volyn-Podolsk Upland, Dnieper-Donetsk Basin, Donetsk folded structure within the East European Platform, and Carpathian and Crimean folded systems and Scythian Platform within the Alpine geosynclinal region. An interesting geological structure, the Black Sea Depression, stands out in the entire system. The structure lies in the merging area of the old East European and younger Scythian Platform. 
The main natural factor defining the content of natural radionuclides in groundwater and surface waters is the geological structure of territory. Apart from radioactive elements in rocks, concentration of radioactive elements in natural waters is defined by hydrogeological and climatic conditions, physical properties of rocks, chemical composition and electrochemical properties of natural waters, migration of radioactive isotopes during their transition from rocks into the water and further transportation with water, mostly in faults or other permeable surfaces.
Climate plays the major role in rock weathering. Rocks, in turn, serve as transportation channel for radioactive elements in natural water. For example, large amount of precipitation leads to leaching of uranium from radioactive minerals, dilution of groundwater, enriched with radioactive elements, and transportation of radioisotopes away from the source of natural concentration. Substantial saturating of rocks contacting radioactive elements may result in accumulation of uranium and radon in ground waters.  Chemical composition of water is another important factor. Acidity, gas composition, and oxidation are the important elements defining mineralization of water, which is directly related to concentration of uranium in groundwater.
Based on previous geological studies, Ukraine was divided into six provinces with different levels of natural radioactivity (Figure 1). Ukrainian Carpathians, Volyn-Podolsk, Eastern Ukrainian, and the Black Sea and Crimean provinces represent zones of low concentration of uranium and natural radioactivity. High levels of uranium are observed in the Ukrainian Shield and Donetsk province. This partitioning is entirely based on geology of territories and it does not take into account the impact of many external factors, including climatic and environmental components.
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Figure 1. Six provinces with different levels of natural radioactivity in groundwater, defined according to geological structure in Ukraine.
The goal of this study is to apply several machine learning algorithms to define homogeneous regions of concentration of uranium in surface waters using multiple environmental parameters. In this study, regionalization is defined as generalization of properties of a phenomenon throughout space, based on a set of various observations. The objectives of this study are 1) to explore unsupervised machine learning techniques to analyze spatial patterns of distribution of uranium in groundwater in Ukraine and 2) identify areas of homogenous natural radioactivity in Ukraine using the machine learning approach. The analysis was implemented using tools available in MatLab, SPSS, ArcGIS, and GeoDa packages.
Methodology
The following spatial analyses and cartographic visualization techniques were used to explore clusters in several of environmental parameters (a set of a univariate and multivariate variables) which impact spatial distribution of radioactivity of uranium in natural waters (dependent variable). 
First, univariate clustering techniques were used to analyze spatial pattern of the dependent variable (natural uranium). Well-known techniques such as global and local spatial autocorrelation, density estimation and hot-spot mapping were conducted on the dependent variable. Spatial univariate clustering analysis was carried out on natural uranium variable to discover a priori hypotheses regarding the spatial uranium pattern. Calculation of spatial autocorrelation was undertaken with the Moran’s I and Getis-Ord General G-statistic measures for points with uranium measurements. Inferential statistical testing was used on a Moran’s I and G-statistic (Anselin 1995, Ord & Getis 2001). 
When the null hypothesis of spatial randomness was rejected by a general test for spatial clustering, the two additional questions are raised: where are the clusters and what is their spatial extent. Local clustering statistics was used to answer these questions. Local methods were used to examine specific sub-regions within the study area to determine if that area represents a cluster with high values (a “hot spot”) or low values (a “cold spot”). Anselin Local Moran’s I and local G-Statistic were used to map clusters of uranium radioactivity at a local level (Anselin 1995, Ord & Getis 2001). However, univariate clustering analysis does not provide an explicit way to delineate spatial clusters or regionalize the study area.
Clustering of multivariate data spatial data or unsupervised learning is a well-developed technique (Jain 2009, Everitt et al. 2001, Anderberg (1973), etc.). In this study, we used standard algorithms of hierarchical clustering, partitioning, and model based methods (Tan et al. 2006) to divide the entire study area into several homogeneous regions. Most partitioning methods use the iterative reallocation to improve formation of clusters and their quality. Hierarchical clustering fixes the membership of a data object once it has been allocated to a cluster. Model-based approach uses hypotheses for each of the clusters and tries to find the best fit of that model to each other (example is SOM - self-organizing maps). Univariate point and kernel density analysis were also conducted that can be used as a density based approach. Density based clustering uses density of data points within a region to discover clusters.
However, regionalization of uranium concentration requires subdividing spatial data into spatially contiguous clusters. There are at least three spatially-based clustering approaches such as contiguity-constrained classification, spatially weighted classification, and post-classification smoothing (Simbahan & Dobermann 2006). 
Spatial contiguity can be modeled by creating a set (or cluster) of neighbors for each sample point. Contiguity-constrained classification imposes a constraint, which determines individuals or groups that can be joined to form a cluster (Openshaw, 1977, Ferligoj & Batagelj, 1982). Extensive work has been done on incorporating different types of constraints into clustering methods (Wagstaff 2006, Duque 2007, Davidson & Basu 2007). Unconstrained hierarchical agglomerative clustering algorithms have been adapted to take into account several contiguity constraints. Samples are represented by a graph, and spatial contiguity algorithms prune the graph to get contiguous clusters. The advantage of graph-based techniques is to make spatial adjacency an essential part of the clustering procedure.
In spatially weighted classification, the principal coordinates of dissimilarity matrices are modified spatially, and then can be used to create classifications. The simplest way is to use geographic coordinates as additional classification variables and achieve spatial contiguity by assigning an appropriate weight to the geographic coordinates (Webster & Burrough, 1972; Govorov 1986, Jain & Farrokhnia 1991). Alternatively, the dissimilarity measure can be weighted as a function of geographic separation between individuals to ensure spatial continuity of the formed clusters, for example, incorporation of known autocorrelation among data from uni- or multivariate variograms into their spatial classification (Bourgault et al., 1992; Caeiro et al., 2003). Principal component semivariograms can be used instead of variable-specific semivariograms. 
Post-classification smoothing (or filtering) only considers spatial relationships among objects and is widely-used in processing of remote sensing data (Atkinson & Lewis 2000). These methods are not readily applicable for our study. 
Model-based approach encompasses methods from machine learning, such as Conceptual Clustering (COBWEB), Expectation–Maximization (EM) algorithm, including Self-Organizing Maps (SOM) which is used in this study. SOM is a neural-network based model that implements a characteristic nonlinear projection from the high-dimensional space of measurements onto a low-dimensional (typically 2-dimensional) array of neurons (Kohonen 2001). The term ‘‘self-organizing’’ refers to the ability to learn and organize information without being given the associated-dependent output values for the input pattern (Mukherjee 1997). The neurons are connected to adjacent neurons by a neighborhood relation that dictates the topology, or structure, of the Kohonen map (also known as SOM map). Similar objects (sampling points in our case) should form a cluster and be mapped close to each other on the grid (SOM map). A training algorithm constructs the nodes in SOM in order to represent the whole data set and their weights were optimized at each iteration step. In each step, one sample vector x from the input data set is chosen randomly and the distance between it and all the weight vectors of the SOM are calculated using some distance measure. Thus, an optimal topology is expected. The network organizes itself by adjusting the synaptic weights as the input patterns are presented to it; hence, discovery of a new pattern is possible at any instant.
Case Study
The study is based on the results of geological surveys in Ukraine carried out by State Enterprise "Kirovgeologiya" (2004). The database consists of 23 environmental parameters collected in 9353 sample points in Ukraine and neighboring territories of Russia, Belarus, and Moldova. Unfortunately, not all environmental parameters are available for all neighboring territories, so the research has been carried out using the complete dataset only available for Ukraine (6546 sample points).
Figure 2 illustrates distribution of uranium in groundwater in Ukraine. Two different symbolization methods for categorization of the source data were used to illustrate spatial distribution of uranium. While the areas of low concentration (below 0.04 Mg/l) and transitional types of uranium have been clearly identified using quintile categorization (Figure 2, center), geometric interval-based categorization can be used to illustrate the distribution of high levels of uranium concentration (0.04-0.145 Mg/l, Figure 2, right).
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Figure 2. Distribution of natural uranium in Ukraine. Geological survey points (left) and  categorization parameters: quintile (center), and geometrical interval (right). Data courtesy of State Enterprise "Kirovgeologiya".
In the previous study we used several spatial statistical methods including exploratory spatial data analysis, global and local factor analysis (proposed geographically weighted factor analysis), correlation and regression analysis (geographically weighted correlation and regression analysis), autoregressive models of spatial econometrics were utilized to describe the impact of several environmental variables on spatial distribution of uranium. As the result, it was found that concentration of uranium has strong local correlation with precipitation, humus, hardness of water, F, Fe, SO4 and As. These first six most significant predictors contribute 60.79% into the overall regression model. However some of these variables are dependent (see Table 1), and the principal components of these variables can be used for analysis instead of the source values.
	
	As
	F
	Fe
	SO4
	Hardness
	Precipitation
	Humus
	U

	As
	1.00
	0.15
	0.04
	0.16
	0.19
	-0.18
	0.27
	0.11

	F
	0.15
	1.00
	-0.03
	0.28
	0.31
	-0.37
	0.29
	0.27

	Fe
	0.04
	-0.03
	1.00
	0.10
	-0.02
	0.39
	0.08
	-0.09

	SO4
	0.16
	0.28
	0.10
	1.00
	0.96
	-0.38
	0.44
	0.41

	Hardness
	0.19
	0.31
	-0.02
	0.96
	1.00
	-0.48
	0.46
	0.41

	Precipitation
	-0.18
	-0.37
	0.39
	-0.38
	-0.48
	1.00
	-0.34
	-0.31

	Humus
	0.27
	0.29
	0.08
	0.44
	0.46
	-0.34
	1.00
	0.31

	U
	0.11
	0.27
	-0.09
	0.41
	0.41
	-0.31
	0.31
	1.00


Table 1. Correlation between primary environmental parameters.
Spatial autocorrelation methods were used to identify patterns in spatial measurements of uranium concentration. According to Moran’s I and Getis-Ord analysis (Getis & Ord 1992, Moran 1950), distribution of uranium can be described as highly clustered with statistical significance. Moran's I index is 0.5475 (p-value = 0.0) and Observed General G = 0.00007 (p-value = 0.0). There is positive spatial autocorrelation as Moran’s I is positive and greater than expected IndexE(I) = -0.00015. For this study, it can indicate that there are some clusters in observations of uranium and, therefore, spatial patterns should be taken into account in cluster models to avoid bias produced by spatial autocorrelation (Anselin 1995). This can be achieved by using spatially receptive clustering techniques.
Bivariate local cluster analysis with Local Moran (Local Indicators of Spatial Association) detects spots with cluster/outlier type values. It delineates statistically significant (5% level) clusters with high values (HH), clusters with low values (LL), as well as outliers where high value is surrounded primarily by low values (HL), and outliers where low value is surrounded primarily by high values (LH). The LISA Cluster and Outlier Analysis map (Figure 3) highlights high values clusters of uranium concentration in central and south-eastern parts of the Ukrainian Shield, and in the north of the Crimean Peninsula. 
Hot Spot Analysis (Local Getis-Ord Gi*) (Anselin 1995, Ord & Getis 2001) returns z-score for each feature in the dataset; the corresponding map is shown in Figure 3, right. For statistically significant positive z-scores, the larger z-scores the denser clusters of high values (hot spot). Similarly, statistically significant negative z-scores indicate dense clusters of low values (cold spot). The map of Local G-Statistic provides very similar picture of clusters of uranium in the study area to the corresponding LISA map (Figure 3, left). Both Local Moran and Hot Spot Analysis maps highlight a particular anomaly in uranium distribution indicated by highly concentrated features with high z-scores, surrounded by low z-score values. This cold spot is associated with the northern part of the Ukrainian Shield with the bedrock outcrops and prospective deposits of uranium.
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Figure 3. Local Moran and Hot Spot Analysis (Getis-Ord Gi*) clustering of natural uranium distribution in Ukraine. A cold spot with high z-scores is clearly detectible in both maps, indicating high concentration of uranium.
Similar observations can be made using density mapping (Figure 4). The Point Density and Kernel Density analyses (Figure 4) show that the highest concentration of uranium is in the central and south- eastern part of the Ukrainian Shield, where climatic conditions are favorable for accumulation of the primary uranium deposits. Moreover, abnormally high concentrations of uranium occur within the Black Sea Lowland in the north of the Crimean peninsula in the southern part of Odessa region where more intensive evaporation at elevated temperatures results in high salinity of waters which plays the major role in accumulation of uranium.
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Figure 4. Point and kernel density of natural uranium distribution in Ukraine.
In the previous studies 23 measured environmental parameters were analyzed to identify core dependencies among the source variables. Seven primary variables and six principal components were identified using 6546 records from the source dataset. In this paper, several multivariate data models and machine learning algorithms were applied to sub-divide the study area according to spatial distribution of identified parameters. At this step, cluster analysis was carried out using techniques of non-hierarchical K-means and ISO Cluster (Jain 2009) with and without spatial weights, as well as Minimum Spanning Tree (SKATER, spatial "K"luster analysis by tree edge removal) (Assuncao 2006). Self-Organizing Maps, a technique from the artificial neural network (Kohonen 2001), was implemented to run unsupervised learning.
According to Makarenko (2000) and Kіrovgeologіja (2004), allocation of natural uranium radioactivity in Ukraine can be divided into six regions. This number of clusters was derived based on the analysis of geological structures. When multiple variable are used for clustering, it is reasonable to evaluate hypothesis on the natural number of groups (clusters) using some quantitative measures. There are few unsupervised cluster evaluation metrics which can be used to estimate the correct, or natural, number of clusters. Effectiveness of grouping of the source data used in this study was evaluated using the Calinski-Harabasz pseudo F-statistic to measure within-group similarity and between-group differences. The analysis shows that for the majority of used methods the most effective grouping can be achieved with minimum 4 clusters. Five and six clusters also predict high effectiveness of grouping, especially for ISO clustering where the most effective segmentation is expected with six classes. Figure 5 illustrates several outcomes of different segmentation techniques.
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5b: Minimum Spanning Tree clustering on primary variables
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5c: K-means clustering on PCA factors
	[image: ]
5d: Minimum Spanning Tree clustering on PCA factors
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5e: ISO clustering on primary variables
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5f: ISO clustering on PCA factors
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5g: ISO clustering on primary variables with spatial weights
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5h: ISO clustering on PCA factors with spatial weights
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5i: Self-Organizing Map on primary variables
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5j: SOM model on primary variables with spatial weights


Figure 5. Zoning of uranium in groundwater based on various models.
Introduction of climatic and environmental variables in the process of spatial clustering helped to delineate homogeneous areas of distribution of uranium in groundwater in Ukraine. The climatic variables, associated with a change in the balance of temperature and precipitation, significantly contributed in principal components in multivariable data models, which resulted in re-shaping the original zones defined by geological structures.
The outcomes of different classification and clustering algorithms were analyzed based on several criteria, including spatial homogeneity. Analysis of geographic and climatic features, along with geological structure of the area, prompted to implement hierarchical approach for zoning, which resulted in identifying three main agglomerated areas with different conditions of accumulation of uranium in groundwater (Figure 6, left). The main approach was to reflect association of climatic variables with the tendency of increased mineralized groundwater towards the south-east of the country.  The three outlined areas were further subdivided into 5 zones (Figure 6, right) based on detailed analysis of different models as follows.
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Figure 6. Three main zones with different conditions of accumulation of uranium in groundwater (left) and proposed regionalization of distribution of uranium in Ukraine (right).
K-means classification on PCA factors (Figure 5c), ISO on PCA factors with spatial weights (Figure 5h), and SOM model on primary variables (Figure 5j) revealed major regional subgroups in distribution of uranium, outlined in the first region which includes the western part of Ukraine, covering the Carpathian fold structures and the Volyn-Podolsk Upland. Climatic zones with prevailing significant rainfall, overlaid with areas without significant deposits of radioactive elements, define the region with low level of uranium in groundwater.
The second region is associated with the northern Ukraine and includes a part of the Ukrainian Shield. Low content of uranium, observed in this area, is associated with the predominance of precipitation. Some geochemical anomalies in this area, such as increased radioactivity, are related to local outcrops of crystalline rocks of the Ukrainian Shield.
The third region, located in the north-eastern part of Ukraine, includes the Dnieper-Donetsk basin and forest-steppe landscapes with predominantly dry climate. This area has geological structures containing non-industrial uranium deposits, which increase the dissolved radioactive elements in the water.
The fourth region is represented by the central part of the Ukrainian Shield and the Black Sea Depression. The arid climate of the steppe and substantial deposits of uranium ore conduce to high concentration of uranium in groundwater, creating ecologically dangerous anomalies. Two methods, Minimum Spanning Tree on PCA factors (Figure 5d) and ISO on primary variables with spatial weights (Figure 5g), outlined two sub-regions: the Ukrainian Shield with predominance of geological factors and the Black Sea Lowland with prevailing climatic factors. This group also includes Crimean Mountains as part of the Alpine geosynclinal system.
The fifth region encompasses Donetsk folded structures and is subdivided into two subtypes with predominance of natural uranium content (related to bedrock of the Ukrainian Shield) and climatic factors of increased salinity of groundwater in the eastern part of the region. Figure 6 (right) illustrates the proposed zoning areas.
[bookmark: _GoBack]Conclusion
Combining techniques of hierarchical and non-hierarchical classification of geological, climatic, and various environmental parameters coupled with geostatistical analysis allowed to identify six regions of distribution of natural radioactive elements in groundwater in Ukraine. The resulting zoning has hierarchical structure which makes it more flexible and evolutionary adaptive in making decisions in geological studies, environmental assessment, and use of groundwater. The future research are aimed at enhancement of the current model by exploring alternative methods of supervised and semi-supervised learning, including Support Vector Machine (SVM), Radial Basis Function (RBF), and Bayesian networks techniques.
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