Study on Rapid Parallel Algorithm based on MPI and OpenMPI for Multi-source POI Location Correction

Wang Yong*, Yang Yi**, Zhang Fuhao*,Luo An*
Research Center of Government GIS
Chinese Academy of Surveying and Mapping
Beijing, China
Abstract. Based on multi-source POI location correction method, this paper studies the parallelization idea of the serial algorithm and proposes the parallel framework based on multi-source POI location correction algorithm, which includes the unit correction method based on grid division and double-layer parallel model of MPI and OpenMP. Multi-source POI in the geographical range of Beijing is taken as experimental data. Experimental results indicate that parallel location correction method can greatly reduce various-source POI location correction time and own sound parallel efficiency.
Key words: POI; location correction; parallelization; parallel efficiency
1. Introduction

POI (Point Of Interest) is an important part of geographic information service and plays a vital role in emergency command, intelligent transportation system, public security, logistics management, E-commerce and other various LBS (Location Based Service) fields. With the development of the Internet technology, Internet POI information resources are increasingly abundant and current abundant POI data have been important data sources for the expansion and update of POI database. However, multi-source POI data owns inconsistent position information while the POI quantity of single data source in China is of million-order of magnitude. Current location correction methods mostly adopt serial algorithms and the efficiency of POI location correction with large data volume is in face of bottleneck, which makes it difficult to satisfy the requirements of POI rapid correction with large volume. Thus, it is urgent to introduce a parallel algorithm to solve the inconsistent POI position information of various sources.

Multiple computing cores are becoming ubiquitous in commodity microprocessor chips, allowing the chip manufacturers to achieve high aggregate performance while avoiding the power demands of increased clock speeds.MPI is a parallel calculation tool of multi-master networking cooperation and is used for the parallel calculation of multi-core/ multi-CPU of single-master. It can coordinate the parallel calculation of multiple masters. Therefore, the scalability of parallel scale is strong. The shortcoming is to use inter-process communications protocol to coordinate and parallelly calculate. This leads to low parallel efficiency and large internal storage overhead. OpenMP is a tool specific to the parallel calculation of multi-core/ multi CPU on single master. OpenMP is more suitable for the parallel calculation of shared memory structure of single computers and the efficiency of multi-core/ multi CPU structure is very high and internal storage overhead is small. The programming statement is concise and intuitive and the compiler is easy to realize. The maximum of OpenMP is to only work on the single master and fail for the parallel calculation between multiple masters.

To the best of our knowledge, however, few studies have investigated the potential of parallel computing in solving the large-scale POI location correction problem. This paper combines MPI with OpenMP and studies the parallelization idea of the serial algorithm and proposes the parallel framework of location correction algorithm to study the rapid parallelization of location correction model.
2. Location correction parallelization method
2.1 Location correction algorithm
Common location correction algorithms include average displacement method, similarity transformation method and polynomial method. Average displacement method is to establish location mapping relation according to the geographical location of different data sources by adding displacement and the displacement usually takes the mean displacement of common point. Similarity transformation method is to transform figures in Euclidean space into similar figures, for example, translation, rotation and scaling.
This paper adopts second-order polynomial transformational model and can be expressed in matrix form as,
[image: image2.png]G)

(1t ¢ ¢ rxe
0 00 000

1

0000 0

r

c

ric

rx

0

Among them, r and c represent the POI geographic coordinates of one data source (namely, longitude and latitude); x and y represents the POI geographic coordinates of another website (namely, longitude and latitude); and [image: image4.png]

, [image: image6.png]

, [image: image8.png]

, [image: image10.png]

, [image: image12.png]

, [image: image14.png]

, [image: image16.png]

, [image: image18.png]

, [image: image20.png]

, [image: image22.png]

, [image: image24.png]

 and [image: image26.png]

 represent the location correction coefficients in second-order polynomial model. Through this transformational model, the location correction relationship between two different websites can be established.

Fundamental principles of resolving location correction model is equal to measuring indirect adjustment method. Firstly, list error equation according to location correction model. Later, calculate the undetermined parameter (location correction coefficient) in error equation according to indirect adjustment method. The error equation is as follows.
[image: image28.png]B)=(l T ret rxc 00 0 00 0
%/ =0 0 0 0 0 0 1 r ¢ r*@ rxc

Namely,

[image: image29.wmf]l

B

v

-

D

=

Where, [image: image31.png]

，

[image: image32.png]

Vrepresents the correction of POI geographic coordinates (longitude x and latitude y) of another data source; B represent the coefficient matrix of error equation and can be calculated from the geographic coordinates (longitude r and latitude c) of one data source; I, including x and y, represents POI geographic coordinates (longitude x and latitude y) of another data source.

According to the calculation method of indirect adjustment, we can obtain from the matrix operation,

[image: image33.wmf]l

B

B

T

T

1

)

B

(

-

=

D

The resolved location correction coefficient is
[image: image34.wmf]D

.
2.2 Serial algorithm parallelization method

2.2.1 Correction unit division

Geographic range of POI point set can be divided into N*N small grids by specified geographic interval. The smaller the geographic interval is, the larger N is. Each small grid corresponds to one correction unit and N*N grid universal set constitutes correction unit set. In the correction unit set, the least square principle is utilized for location correction and the corrected results are made accuracy assessment, shown as Figure 1.

[image: image35.jpg]control points splitting in the

| 4 correction grid

correction grid

check points splitting in the
correction grid

Figure 1. Structure diagram of grid division in correction unit
2.2.2 Double-layer parallel model

In POI location correction process, process-level penalization is used to realize the global parallelization of the algorithm, but the inside of each process is still in serial processing of each correction unit. Due to its shared storage, thread-level penalization can make up for this shortcoming and further speed up the processing procedure inside the process.

This paper combines MPI with OpenMP and designs double-layer parallel model of process-level and thread-level. In this parallel model, MPI process is in charge of read-write data and distributes each process task. OpenMP thread plays a role inside each process and through circulation calls location correction model and completes the location correction of the corrected units. This paper firstly distributes the tasks of each process according to the geographical range of multi-source POI. In each correction unit, the fundamental principles of the least square are adopted to resolve location correction coefficient through region splitting and evaluate the location correction accuracy. Parallelization method is utilized to establish various-source POI location correction relationship and the flow is shown as Figure 2.
[image: image36.jpg]Computational node

MPT Thread 0

i atiatin
Splitting region in | | Coro < Location / vy
correction gr correction
ﬂ & P |\ ey
evaluation
MPI Thread 1 -
D ceuTaey
Splitting region in //’ o ioh //’ evaluation
[¥] correction grid % Core correction AN
N |\ AeeTey
cvaluation
Computational node
MPI Thread 2
e Kecuracy
N Selitting region in . Location | Levaluation
correction grid [or¢ correction ToouTae
T N Aceuracy
evaluation
MPT Thread 3
i ACeuTacy
Splitting region in [[~ / >’T/' svaluation
correction grid correction
corree i N [N\ Fecuraey

evaluation

Figure 2. Structure diagram of location correction double-layer parallel model
3．Experiment results and analysis
3.1 Experiment environment and experiment data
Experiment environment is Windows high-performance colony, which includes 4 nodes with two-core and four thread Intel Xeon CPU, 12GB internal storage, 256GB hard disk and Gigabit ethernet card. The software is Winodows 7 operating system, with Openmpi1.4.1, OpenMP 2.0 and MySQL database. The experiment data are two different POI data sets from different websites in Beijing area (39.26°N，115.25°E，41.03°N，117.30°E), respectively with data sizes of 183,200 and 174,500. Through sampling measurement, the error of various-source POI before correction is at kilometer level.
3.2 Analysis on location correction accuracy
This paper adopts different correction unit interval to split correction unit and further make location correction on various-source POI data. Shown as Table 1, with the decrease of correction unit interval, the maximum error, minimum error and mean square error also significantly decrease. With 30 minutes as geographical interval, the mean square error in longitude direction is 0.88m and the mean square error in latitude direction is 0.01m, satisfying the requirements of the actual application on POI location mapping accuracy. Figure 3 shows the comparison diagram of some regional location before and after correction.

	Table 1 Accuracy statistical table

	Accuracy
Interval
	Longitude direction mean square error
	Latitude direction mean square error
	Longitude direction maximum error
	Longitude direction minimum error
	Latitude direction maximum error
	Latitude direction minimum error

	4 degrees
	0.88173
	0.00717
	1.93567
	0.02346
	0.03003
	0.000053

	2 degrees
	0.13623
	0.00139
	0.28953
	0.00107
	0.00447
	0.00001

	1 degree
	0.01857
	0.00001
	0.03903
	0.00006
	0.00039
	0.00001

	30 minutes
	0.00242
	0.00001
	0.00505
	0.00001
	0.00003
	0.00001

	15 minutes
	0.00088
	0.00001
	0.00182
	0.00001
	0.00001
	0.00001

[image: image37.png]e Datasourcel
4 Datasource 2
/,~ Rectified data2

Figure 3. Comparison diagram before and after correction
3.3 Analysis on parallel efficiency
Run time and speed-up ratio are two important indexes to measure the parallel efficiency of the algorithm. Among them, run time of the algorithm refers to the time from the start to the end of the last process; and speed-up ratio refers to the ratio of running time of one task in serial environment to running time in parallel environment. Through experiment, this paper realizes the running time and speed-up ratio in different parallel algorithms and compares the differences in performance improvement between parallel algorithm and serial algorithm and in parallel efficiency between different algorithms. Among them, the unit number of parallel algorithms can be expressed as NP*NT, where NP represents the number of MPI processes in parallel algorithm and NT represents the number of OpenMP threads. For the same number of NP*NT, there are different combinations of processes and threads. The experiment results are shown as Figure 4. As the experiment showes,with the increase of thread number, the time consumed to location correction has decreased sharply,and the speedup has improved significantly.Comparing to the speedup of thread number 32,the speedup of thread number 64 hardly improved.The result shows that the speedup has reached bottleneck when the thread number reaches to 32 for the sake fo the impact of IO.Overall, location correction algorithm after the transformation of the parallel algorithm in this paper greatly decreases the correction time and achieves good speed-up ratio, which verifies the validity of the parallel algorithm in this paper.
[image: image38.png]750

150

—=—Parallel algorithm

—+—serial agorithm

number of threads

Figure 4 Experiment results of the efficiency of parallel algorithm
4．Conclusion
On the basis of analyzing multi-source POI location correction algorithm, this paper proposes the parallel framework of location correction algorithm and further forms one rapidly parallel algorithm based on multi-source POI location correction serial algorithm, providing reference for the geocomputation of rapid parallelization of the serial algorithm. The experiment indicates that the parallel algorithm designed and realized in this paper can realize the rapid parallelization of POI location correction and the algorithm transformed by this method owns good stability and speed-up ratio. The follow-up studies shall further explore the applicability of this parallel framework in road network and explore and deepen relevant studies and application.
Acknowledgments
This research was funded by National High Technology Research and Development Program of China (863 Program) under grant No. 2012AA12A402 and No. 2013AA12A403, and the Basic Research Fund of CASM under grant No. 7771403.

References

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9(8), 772-772.
Durham, G., & Geweke, J. (2013). Adaptive sequential posterior simulators for massively parallel computing environments. Available at SSRN 2251635.
Ekanayake, J., & Fox, G. (2010). High performance parallel computing with clouds and cloud technologies. In Cloud Computing (pp. 20-38). Springer Berlin Heidelberg.
Hawick, K. A., Leist, A., & Playne, D. P. (2010). Parallel graph component labelling with GPUs and CUDA. Parallel Computing, 36(12), 655-678.
Hendrickson, B., & Kolda, T. G. (2000). Graph partitioning models for parallel computing. Parallel computing, 26(12), 1519-1534.
Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., & Chapman, B. (2011). High performance computing using MPI and OpenMP on multi-core parallel systems. Parallel Computing, 37(9), 562-575.
Migdalas, A., Pardalos, P. M., & Story, S. (2012). Parallel computing in optimization. Springer Publishing Company, Incorporated.
Mininni, P. D., Rosenberg, D., Reddy, R., & Pouquet, A. (2011). A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Computing, 37(6), 316-326.
Pradhan, A., & Mahinthakumar, G. (2012). Finding all-pairs shortest path for a large-scale transportation network using parallel floyd-warshall and parallel Dijkstra algorithms. Journal of Computing in Civil Engineering, 27(3), 263-273.
Tomov, S., Dongarra, J., & Baboulin, M. (2010). Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parallel Computing, 36(5), 232-240.
Xian, W., & Takayuki, A. (2011). Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster. Parallel Computing, 37(9), 521-535.
Yang, B., Zhang, Y., & Lu, F. (2014). Geometric-based approach for integrating VGI POIs and road networks. International Journal of Geographical Information Science, 28(1), 126-147.
_1476944908.unknown

_1477480913.unknown

_1476944906.unknown

