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9.1 Introduction 
 
A map is a projection of data usually from the real Earth, 

celestial body or imagined world to a plane 

representation on a piece of paper or on a digital display 

such as a computer monitor. Usually, maps are created 

by transforming data from the real world to a spherical 

or ellipsoidal surface (the generating globe) and then to 

a plane. The characteristics of this generating globe are 

that angles, distances or surfaces measured on it are 

proportional to those measured on the real Earth. The 

transformation from the curved surface into a plane is 

known as map projection and can take a variety of 

forms, all of which involve distortion of areas, angles, 

and/or distances. The types of distortion can be 

controlled to preserve specific characteristics, but map 

projections must distort other characteristics of the 

object represented. The main problem in cartography is 

that it is not possible to project/transform a spherical or 

ellipsoidal surface into a plane without distortions. Only 

a spherical or ellipsoidal shaped globe can portray all 

round Earth or celestial body characteristics in their true 

perspective. 

 

The process of map projection is accomplished in three 

specific steps: 

1) approximating the size and shape of the object (e.g., 

Earth), by a mathematical figure that is by a sphere or an 

ellipsoid; 

2) reducing the scale of the mathematical representation 

to a generating globe (a reduced model of the Earth 

from which map projections are made) with the principal 

scale or nominal scale that is the ratio of the radius of 

the generating globe to the radius of the mathematical 

figure representing the object [Earth]) equivalent to the 

scale of the plane map; and 

3) transforming the generating globe into the map using 

a map projection (Figure 9.1). 

 

 
 

Figure 9.1. Map projection from the Earth through a 

generating globe to the final map (After Canters, 2002). 

 

Map projections depend first on an assumption of 

specific parameters of the object (Earth) itself, such as 

spherical or ellipsoidal shape, radius of the sphere (or 

lengths of the semi-major and semi-minor axes of the 

ellipsoid), and a specific datum or starting point for a 

coordinate system representation. These assumptions 

form the basis of the science of Geodesy and are 

currently accomplished using satellite measurements 

usually from the Global Positioning System (GPS), 

Glonass, or Galileo (see section 9.2). Once these 

measurements are accepted, an ellipsoidal 

representation of coordinates is generated as latitude 

and longitude coordinates. Those coordinates can then 

be transformed through map projection equations to a 

plane Cartesian system of x and y coordinates. The 

general equations of this transformations have the 

following form: 

 

x = f1(φ,λ),  y = f2(φ,λ) 

 

where 

 

x is the plane coordinate in the east‐west direction 

y is the plane coordinate in the north‐south 

direction 

φ is the latitude coordinate 

λ is the longitude coordinate 

 

The form of the functions f1 and f2 determines the exact 

transformation and the characteristics of the ellipsoidal 

or spherical representation that will be preserved. 

 

Before addressing the specific types of transformations 

and the characteristics preserved, it is necessary to 

understand the geodetic characteristics of the ellipsoidal 

coordinates and how these are generated with modern 

satellite positioning systems. 
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9.2 Geodesy and Global Navigation Satellite 

Systems (GNSS) 
 

Map projections have their largest and most frequent 

application in producing maps showing a smaller or 

bigger part of the Earth's surface. In order to produce 

the map of a region, it is necessary to make a geodetic 

survey of that region and then to visualise the results of 

such a survey. Geodesy is a technology and science 

dealing with the survey and representation of the Earth's 

surface, the determination of the Earth's shape and 

dimensions and its gravity field. Geodesy can be divided 

into applied, physical, and satellite geodesy .  

 

Applied geodesy is a part of geodesy encompassing land 

surveying, engineering geodesy and management of 

geospatial information. Land surveying is a technique for 

assessing the relative position of objects on the Earth 

surface, when the Earth's curvature is not taken into 

account. Engineering geodesy is a part of geodesy 

dealing with designing, measuring, and supervising of 

constructions and other objects (e.g., roads, tunnels and 

bridges). 

 

Physical geodesy is a part of geodesy dealing with the 

Earth's gravity field and its implication on geodetic 

measurements. The main goal of physical geodesy is the 

determination of the dimensions of the geoid, a level 

surface modelling Earth, where the potential of the 

gravity field is constant.  Geometrical geodesy is 

concerned with determination of the Earth's shape, size, 

and precise location of its parts, including accounting for 

the Earth's curvature.  

 

Satellite geodesy is part of geodesy where satellites are 

used for measurements. In the past, exact positions of 

isolated spots on the Earth were determined in 

astronomical geodesy, that is, by taking measurements 

on the stars. Measuring techniques in satellite geodesy 

are geodetic usage of Global Navigation Satellite Systems 

(GNSS) such as GPS, Glonass and Galileo. 

 

A satellite navigation system is a system of satellites that 

provides autonomous geospatial positioning with global 

coverage. It allows small electronic receivers to 

determine their location (longitude, latitude, and 

altitude) to within a few metres using time signals 

transmitted along a line‐of‐sight by radio from satellites. 

Receivers calculate the precise time as well as position. A 

satellite navigation system with global coverage may be 

termed a global navigation satellite system or GNSS. As 

of April 2013, only the United States NAVSTAR Global 

Positioning System (GPS) and the Russian GLONASS are 

global operational GNSSs. China is in the process of 

expanding its regional Beidou navigation system into a 

GNSS by 2020. The European Union's Galileo positioning 

system is a GNSS in initial deployment phase, scheduled 

to be fully operational by 2020 at the earliest. France, 

India and Japan are in the process of developing regional 

navigation systems. Global coverage for each system is 

generally achieved by a satellite constellation of 20–30 

medium Earth orbit satellites spread among several 

orbital planes. The actual systems vary but use orbital 

inclinations of >50° and orbital periods of roughly twelve 

hours at an altitude of about 20,000 kilometres. 

 

Photogrammetry is an important technology for 

acquiring reliable quantitative information on physical 

objects and the environment by using recording, 

measurements and interpretation of photographs and 

scenes of electromagnetic radiation by using sensor 

systems. Remote sensing is a method of collecting and 

interpreting data of objects from a distance. The method 

is characterized by the fact that the measuring device is 

not in contact with the object to be surveyed. Its most 

frequent application is from aerial or space platforms. 

 

The study of the transformation from the Earth's surface 

model or generating globe to a two‐dimensional 

representation requires the use of the following 

concepts: ellipsoid, datum, and coordinate system. Each 

of these is discussed below. 

 

The Earth's ellipsoid is any ellipsoid approximating the 

Earth's figure. Generally, an ellipsoid has three different 

axes, but in geodesy and cartography, it is most often a 

rotational ellipsoid with small flattening (Figure 9.2). 

 

 
 

Figure 9.2. Terminology for rotational ellipsoid: EE' is the 

major axis, PP' is the minor axis and the axis of rotation, 

where a, is the semi-major axis and b is the semi-minor 

axis. 

 

 

The rotational ellipsoid is a surface resulting from 

rotating an ellipse around a straight line passing through 

the endpoints of the ellipse. It is used to model the 

Earth. Famous Earth ellipsoids include the ones 

elaborated by Bessel (1841), and the more recently, WGS84 

and GRS80 ellipsoids. Flattening is a parameter used to 

determine the difference between the ellipsoid and the 
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sphere. It is defined by the equation  
a b

f
a


 , where 

a and b are the semi-major and semi-minor axes, 

respectively. The semi- major axis a, is the Equatorial 

radius because the Equator is a circle. The semi-minor 

axis b is not a radius, because any planar section of the 

ellipsoid having poles P and P' as common points is an 

ellipse and not a circle. 

 

Generally speaking, a datum is a set of basic parameters 

which are references to define other parameters. A 

geodetic datum describes the relation of origin and 

orientation of axes on a coordinate system in relation to 

Earth. At least eight parameters are needed to define a 

global datum: three for determination of the origin, 

three for the determination of the coordinate system 

orientation and two for determination of the geodetic 

ellipsoid. A two‐dimensional datum is a reference for 

defining two‐dimensional coordinates on a surface. The 

surface can be an ellipsoid, a sphere or even a plane 

when the region of interest is relatively small. A 

one‐dimensional datum or vertical datum is a basis for 

definition of heights and usually in some relation to 

mean sea level. 

 

The WGS84 and GRS80 ellipsoids were established by 

satellite positioning techniques. They are referenced to 

the centre mass of the Earth (i.e., geocentric) and 

provide a reasonable fit to the entire Earth. The WGS84 

datum provides the basis of coordinates collected from 

the GPS, although modern receivers transform the 

coordinates into almost any user selected reference 

datum. 

 

The need for datum transformation arises when the data 

belongs to one datum, and there is a need to get them in 

another one (e.g., WGS84 to North American Datum of 

1927 or vice versa). There are several different ways of 

datum transformation, and readers should consult the 

appropriate geodetic references (see Further Reading 

section) or their device handbook. 

 

9.3 Three‐Dimensional Coordinate Reference 

Systems 
 

 
 

Figure 9.3. Geodetic or ellipsoidal coordinate system. 

 

Geodetic coordinates are geodetic latitude and geodetic 

longitude, with or without height. They are also referred 

to as ellipsoidal coordinates. 

 

Geodetic latitude is a parameter which determines the 

position of parallels on the Earth's ellipsoid and is 

defined by the angle from the equatorial plane to the 

normal one (or line perpendicular) to the ellipsoid at a 

given point. It is usually from the interval [–90°, 90°] and 

is marked with Greek letter φ. An increase in geodetic 

latitude marks the direction of North, while its decrease 

marks the direction South. Geodetic longitude is a 

parameter which determines the position of the 

meridian on the Earth's ellipsoid and is defined by the 

angle from the prime meridian (that is the meridian of 

the Greenwich observatory near London) plane to the 

given point on the meridian plane. It is most often from 

the interval [–180°, 180°] and is marked with Greek letter 

λ. An increase in geodetic longitudes determines the 

direction of East, while a decrease determines the 

direction of West (Figure 9.3). 

 

A geodetic datum should define the relation of geodetic 

coordinates to the Earth. Geodetic coordinates φ, λ and 

height h may be transformed to an Earth‐centred, 

Cartesian three‐dimensional system using the following 

equations: 

 

X  ( N  h) cos  cos 

Y  ( N  h) cos sin 

Z  ( N (1  e2 )  h) sin 

 

where 

 

2 2
2

22 2
,

1 sin

a a b
N e

ae


 

 
. 

 

If we wish to represent a large part of the Earth, a 

continent or even the whole world, the flattening of the 

Earth can be neglected. In that case, we speak about a 

geographic coordinate system instead of a geodetic 

coordinate system. Geographic coordinates are 

geographic latitude and geographic longitude, with or 

without height. They are also referred to as spherical 

coordinates. Geographic latitude is a parameter which 

determines the position of parallels on the Earth's 

sphere and is defined by the angle from the equatorial 

plane to the normal on the sphere at a given point. It is 

usually from the interval [–90°, 90°] and is marked with 

Greek letter φ. An increase in geographic latitude marks 

the direction of North, while its decrease marks the 

direction South. Geographic longitude is a parameter 

which determines the position of the meridian on the 

Earth's sphere and is defined by the angle from the 

prime meridian plane to the given point on the meridian 
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plane. It is most often from the interval [–180°, 180°] and 

is marked with Greek letter λ. An increase in geographic 

longitudes determines the direction of East, while a 

decrease determines the direction of West (Figure 9.4). 

 

 
 

Figure 9.4. Geographic or spherical coordinate system: 

geographic latitude φ, geographic longitude λ. 

 
Geographic coordinates φ, λ and height h=0 may be 

transformed to an Earth‐centred, Cartesian 

three‐dimensional system using the following equations: 

 

X  R cos  cos 

Y  R cos  sin 

Z  R sin 

 
where R is a radius of the spherical Earth. 

 
A spherical coordinate system can be obtained as a 

special case of an ellipsoidal coordinate system taking 

into account that flattening equals zero, f = 0, or 

equivalently stating that the second eccentricity equals 

zero, e = 0. 

 
Sometimes, in geodetic and cartographic practice, it is 

necessary to transform Cartesian three‐dimensional 

coordinates to spherical or even ellipsoidal coordinates. 

Furthermore, sometimes there is a need to make a 

transformation from one three‐dimensional coordinate 

system to another one. The appropriate methods or 

equations exist, but the reader should consult the 

available literature (see Further Reading chapter). 

 

9.4 Two‐Dimensional Coordinate Reference 

Systems 
 
Generally, for use of geospatial data, a common frame of 

reference is needed and this is usually done in a plane 

reference system. Because maps reside in a plane 

geometric system, the spherical or ellipsoidal 

coordinates, generated from satellite positioning 

systems or from any other surveying device, must be 

mathematically transformed to the plane geometry 

system. The simplest transformation is to assume that 

the plane x coordinate is equivalent to φ, and the plane 

y coordinate is equivalent to λ. The result is known as 

the Plate Carrée projection and although it is simple, it 

involves significant distortion of the coordinate positions 

and thus presents areas, most distances, and angles that 

are distorted or deformed in the plane. 

 
More sophisticated transformations allow preservation 

of accurate representations of area or distance or angles, 

or other characteristics, but not all can be preserved in 

the same transformation. In fact, usually only a single 

characteristic, for example preservation of accurate 

representation of area, can be maintained, resulting in 

distortion of the other characteristics. Thus, many 

different map projections have been developed to allow 

preservation of the specific characteristics a map user 

may require. The following sections provide discussion 

and the mathematical basis for transformations that 

preserve specific Earth characteristics, specifically area, 

angles, and distances. 

 
The Universal Transverse Mercator (UTM) coordinate 

system is based on projections of six‐degree zones of 

longitude, 80° S to 84° N latitude and the scale factor 

0.9996 is specified for the central meridian for each UTM 

zone yielding a maximum error of 1 part in 2,500. In the 

northern hemisphere, the x coordinate of the central 

meridian is offset to have a value of 500,000 meters 

instead of zero, normally termed as "False Easting." The 

y coordinate is set to zero at the Equator. In the 

southern hemisphere, the False Easting is also 500,000 

meters with a y offset of the Equator or False Northing 

equal to 10,000,000 meters. These offsets force all 

coordinates in the system to be positive. 

 
In the Universal Military Grid System (UMGS), the polar 

areas, north of 84° N and south of 80° S, are projected to 

the Universal Polar Stereographic (UPS) Grid with the 

pole as the centre of projection and a scale factor 

0.9994. They are termed "North Zone" and "South 

Zone." 

 
Map projection also is dependent on the shape of the 

country. In the United States of America, the State Plane 

Coordinate System is established in which states with an 

east‐west long axis, Tennessee, for example, use the 

Lambert Conformal Conic projection, whereas states 

with a north‐south long axis, Illinois, for example, use 

the Transverse Mercator projection.. Not only a map 

projection and the map scale, but coordinate 
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measurement units are also an important part of any 

map. In order to be sure of the accuracy of data taken 

from a map, read carefully all information written along 

the border of the map and, if necessary, ask the National 

Mapping Agency for additional information. 

 
A final plane coordinate system of relevance to 

geographic data modelling and analyses, particularly for 

satellite images and photographs, is an image coordinate 

system. A digital image system is not a right‐handed 

Cartesian coordinate system since usually the initial 

point (0, 0) is assigned to the upper left corner of an 

image. The x coordinate, often called sample, increases 

to the right, but the y coordinate, called the line, 

increases down. Units commonly are expressed in 

picture elements or pixels. A pixel is a discrete unit of the 

Earth's surface, usually square with a defined size, often 

expressed in metres. 

 
Often, in geodetic and cartographic practice, it is 

necessary to transform plane Cartesian two‐dimensional 

coordinates to another plane two‐dimensional 

coordinate system. The indirect method transforms 

plane two‐dimensional coordinates into spherical or 

ellipsoidal coordinates by using so‐called inverse map 

projection equations. Then, the method follows with 

appropriate map projection equations that give the 

result in the second plane, two‐dimensional system. The 

direct method transforms plane coordinates from one 

system to another by using rotation, translation, scaling, 

or any other two‐dimensional transformation. For more 

details, the reader should consult references. 

 

9.5 Classes of Map Projections 
 

Projections may be classified on the basis of geometry, 

shape, special properties, projection parameters, and 

nomenclature. The geometric classification is based on 

the patterns of the network (the network of parallels of 

latitude and meridians of longitude). According to this 

classification, map projections are usually referred to as 

cylindrical, conical, and azimuthal, but there are also 

others. A complete description of these geometric 

patterns and associated names can be found in the 

references  

 
An azimuthal projection also projects the image of the 

Earth on a plane. A map produced in cylindrical 

projection can be folded in a cylinder, while a map 

produced in conical projection can be folded into a cone. 

Firstly, let us accept that almost all map projections in 

use are derived by using mathematics, especially its part 

known as differential calculus. This process allows for 

the preservation of specific characteristics and 

minimizing distortion, such as angular relationships 

(shape) or area. 

 

9.5.1 Cylindrical Projections 

 
Cylindrical projections are those that provide the 

appearance of a rectangle. The rectangle can be seen as 

a developed cylindrical surface that can be rolled into a 

cylinder. Whereas these projections are created 

mathematically rather than from the cylinder, the final 

appearance may suggest a cylindrical construction. A 

cylindrical map projection can have one line or two lines 

of no scale distortion. Classic examples of cylindrical 

projections include the conformal Mercator and 

Lambert's original cylindrical equal area (Figure 9.5). 

 
Cylindrical projections are often used for world maps 

with the latitude limited to a reasonable range of 

degrees south and north to avoid the great distortion of 

the polar areas by this projection method. The normal 

aspect Mercator projection is used for nautical charts 

throughout the world, while its transverse aspect is 

regularly used for topographic maps and is the 

projection used for the UTM coordinate system 

described above. 

 

 

a. 

 
 

b. 
 

Figure 9.5. The conformal cylindrical Mercator projection 

(a) and Lambert's cylindrical equal area projection (b). 
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   a.      b. 

Figure 9.7. The stereographic (a) and Lambert's azimuthal equal‐area (b) projections. 
 

 

9.5.2 Conical Projections 
 

Conical projections give the appearance of a developed 

cone surface that can be furled into a cone. These 

projections are usually created mathematically and not 

by projecting onto a conical surface. A single line or two 

lines may exist as lines of no scale distortion. 
 

 
a. 

b. 

 

Figure 9.6. Lambert's conformal conic (a) and the Albers 

conical equal area (b) projections. 

 
Classic examples of conical projections are Lambert's 

conformal conic and the Albers conical equal area 

projection (Figure 9.6). Conical projections are 

inappropriate for maps of the entire Earth and work best 

in areas with a long axis in the east‐west direction. This 

makes them ideal for representations of land masses in 

the northern hemisphere, such as the United States of 

America, Europe, or Russia. 

 

9.5.3 Azimuthal Projections 

 
Azimuthal projections are those preserving azimuths 

(i.e., directions related to north in its normal aspect). A 

single point or a circle may exist with no scale distortion. 

Classic examples of azimuthal projections include the 

stereographic and Lambert’s azimuthal equal area 

(Figure 9.7). 

 

9.5.4 Other Classifications 

 
Other classifications of map projections are based on the 

aspect (i.e., the appearance and position of the graticule, 

poles or the equator in the projection). Aspect can be 

polar, equatorial, normal, transverse or oblique. 

Accordingly, there are polar projections, normal 

projections, equatorial projections, transverse projections 

and oblique map projections. These are names of 

individual sets of map projections and not a systematic 

categorization because, for example, a projection can be 

polar and normal at the same time. In theory, each 

projection can have any aspect. However, many 

projections are almost always used in certain aspects in 

order to express their characteristics as well as possible. 
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   a.      b.          c. 

Figure 9.8. Orthographic projection in its normal (a), transverse (b) and oblique (c) aspects. 

For example, many factors such as temperature, 

contamination breakout and biodiversity depend on the 

climate (i.e., the latitude). For projections with a 

constant distance between parallels, the latitude in the 

equatorial aspect can be directly converted into vertical 

distance, facilitating comparison. Certain projections 

with graticules in normal aspect appearing as simple 

curves were originally defined by geometric 

constructions. 

 
Considering most transverse and oblique projections 

have graticules consisting of complex curves, such 

projections were not systematically analysed prior to the 

computer era. In general, calculating oblique projections 

for a particular ellipsoid is very complex and is not 

developed for all projections. Nevertheless, oblique 

projections have applications. 

 
A map projection is a normal projection or it is in normal 

aspect if the appearance and position of the graticule, 

poles and the equator in the projection are the most 

natural and are usually determined by geometrical 

conditions. It is often determined by the simplest 

calculations or the simplest appearance of the graticule. 

The polar aspect is normal for azimuthal projections, 

while the equatorial aspect is normal for cylindrical 

projections. In azimuthal and conic projections, the 

graticule consists of straight lines and arcs of circles; 

normal aspect cylindrical projections have graticules 

consisting only of straight lines forming a rectangular 

grid. 

 
A map projection is a transverse projection or it is in 

transverse aspect if the appearance and position of the 

graticule, poles or the equator in the projection were 

derived by applying formulae for the normal aspect 

projection to a globe which was previously rotated by 

90° around its centre, so that poles are in the equatorial 

plane.  

 

A map projection is a polar projection or it is in polar 

aspect if the image of a pole is in the centre of the map. 



8 
 

It is often used as a synonym for normal aspect 

azimuthal projection. 

 

A map projection is equatorial or it is in equatorial 

aspect if the image of the equator is in the centre of the 

map. The image of the Equator is placed in the direction 

of one of the main axes of the map, mostly horizontally. 

Equatorial projection often means normal aspect 

cylindrical projection. 

 

A map projection is an oblique projection or it is in 

oblique aspect if it is neither polar nor equatorial, 

neither normal aspect nor transverse (Figure 9.8). 

 

9.6 Preserving Specific Properties with Map 

Projections 
 

Map projections are usually designed to preserve 

specific characteristics of the globe, such as areas, 

angles, distances, or specific properties such as great 

circles (intersections of the Earth and a plane which 

passes through the Earth’s center) becoming straight 

lines. Maps with angles preserved are called conformal 

projections. 

 

Maps with areas preserved are referred to as equal‐area 

or equivalent projections 

 

9.6.1 Preserving Angles 
 

Gerardus Mercator in 1569 developed a cylindrical 

conformal projection that bears his name. He developed 

it to show loxodromes or rhumb lines, which are lines of 

constant bearing, as straight lines, making it possible to 

navigate a constant course based on drawing a rhumb 

line on the chart. The Mercator projection has meridians 

as equally spaced parallel lines, with parallels shown as 

unequally spaced straight parallel lines, closest near the 

Equator and perpendicular to the meridians. The North 

and South Poles cannot be shown. Scale is true along the 

Equator or along two parallels equidistant from the 

Equator. Significant size distortion occurs in the higher 

latitudes and that is why the Mercator projection is not 

recommended for world maps (Figure 9.5a). The 

Mercator projection, a standard for marine charts, was 

defined for navigational charts and is best used for 

navigational purposes. 

 

Transverse Mercator 

 

The transverse Mercator, also known as a Gauss‐Krüger 

projection, is a projection where the line of constant 

scale is along a meridian rather than the Equator. The 

central meridian and the Equator are straight lines. 

Other meridians and parallels are complex curves and 

are concave toward the central meridian. The projection 

has true scale along the central meridian or along two 

lines equidistant from and parallel to the central 

meridian. It is commonly used for large‐scale, small area, 

presentations. Due to the distribution of distortion, it is 

usually used by dividing the region to be mapped in 

three‐degree or six‐degree zones limited by meridians. 

This projection is widely used for topographic maps from 

1:25,000 scale to 1:250,000 scale, and it is the basis of 

the UTM coordinate system. 

 

Lambert Conformal Conic 

 

The Lambert Conformal Conic (LCC) projection, 

presented by Johann Heinrich Lambert in 1772, shows 

meridians as equally spaced straight lines converging at 

one of the poles (Figure 9.6a). Angles between the 

meridians on the projection are smaller than the 

corresponding angles on the globe. Parallels are 

unequally spaced concentric circular arcs centred on the 

pole, and spacing of the parallels increases away from 

the pole. The pole nearest the standard parallel is a point 

and the other pole cannot be shown. The scale is true 

along the standard parallel or along two standard 

parallels and is constant along any given parallel. The 

LCC projection is extensively used for large‐scale 

mapping of regions with an elongated axis in the East‐ 

West directions and in mid-latitude regions. It is 

standard in many countries for maps at 1:500,000 scale, 

as well as for aeronautical charts of a similar scale. 

 

Stereographic 

 

The Stereographic projection, developed by the 2nd 

century B.C., is a perspective azimuthal projection that 

preserves angles (i.e., is conformal). This projection is 

the only projection in which all circles from the globe are 

represented as circles in the plane of projection. The 

polar, Equatorial and oblique aspects result in different 

appearances of the graticule. The polar aspect is 

achieved by projecting from one pole to a plane tangent 

at the other pole. In this aspect, meridians are equally 

spaced straight lines intersecting at the pole with true 

angles between them. Parallels are unequally spaced 

circles centred on the pole represented as a point. 

Spacing of the parallels increases away from the pole. 

The Stereographic projection is used in the polar aspect 

for topographic maps of Polar Regions. The Universal 

Polar Stereographic (UPS) is the sister projection of the 

UTM for military mapping. This projection generally is 

chosen for regions that are roughly circular in shape. It is 

in use in oblique ellipsoidal form in a number of 

countries throughout the world, including Canada, 

Romania, Poland and the Netherlands. Different 

countries have different mathematical developments or 

versions of the Stereographic projection. 
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9.6.2 Preserving Areas 
 

Lambert Cylindrical Equal Area. 

 

The Cylindrical Equal Area projection was first presented 

by Johann Heinrich Lambert in 1772. It became the basis 

for many other similar equal area projections including 

the Gall Orthographic, Behrmann, and Trystan‐Edwards 

projections. Lambert's original projection uses a single 

line of constant scale along the Equator (Figure 9.5b). 

Similar equal area projections are constructed using two 

parallels as the lines of constant scale. On the Lambert 

Cylindrical Equal Area projection, meridians are equally 

spaced straight parallel lines and the Equator is π times 

as long as the meridians. Lines of latitude are unequally 

spaced parallel lines furthest apart near the Equator and 

are perpendicular to the meridians. Changing the 

spacing of the parallels is the method used to preserve 

equal areas. Significant distance and angle distortion, 

however, results with the distortion greater in high 

latitudes near the poles. This projection is not often used 

directly for map construction, but it is a standard to 

describe map projection principles in textbooks and has 

also served as a prototype for other projections. 

 

Mollweide 

 

In 1805, Carl Brandan Mollweide developed a 

pseudocylindrical equal area projection on which the 

central meridian is a straight line one‐half as long as the 

Equator forming an elliptical area of projection for the 

entire globe. The meridians 90° East and West of the 

central meridian form a circle on the Mollweide 

projection. Other meridians are equally spaced 

semiellipses intersecting at the poles and concave 

toward the central meridian. Parallels are unequally 

spaced straight lines and are perpendicular to the 

central meridian. The parallels are farthest apart near 

the Equator with spacing changing gradually. 

 

 
 

Figure 9.9. Logo of ICA in the Mollweide projection. 

 

The North and South Poles are shown as points, and the 

scale is only true along latitudes 40°44' North and South 

and constant along any given latitude. The entire globe 

projected and centred on the Greenwich meridian is 

shown in Figure 9.9. The Mollweide projection has 

occasionally been used for world maps, particularly 

thematic maps where preservation of area is important. 

Different aspects of the Mollweide have been used for 

educational purposes, and it was chosen for the logo of 

ICA (Figure 9.9). 

 

9.6.3 Compromise Projections 
 

Map projections that are neither conformal nor equal 

area are called compromise projections. They are almost 

unlimited in variety. Among them are many important 

and useful projections. 

 

Orthographic 

 

The Orthographic projection, developed by the 2nd 

century B.C., is a perspective azimuthal projection that is 

neither conformal nor equal area. It is used in polar, 

Equatorial and oblique aspects and results in a view of 

an entire hemisphere. The polar aspect of the projection 

has meridians that are straight lines and intersect the 

central pole with the angles between meridians being 

true. The pole is a point and the parallels are unequally 

spaced circles centred on the pole. The spacing parallels 

decrease away from the pole. Scale is true at the centre 

and along the circumference of any circle with its centre 

at the projection centre. The projection has a globe‐like 

look (Figure 9.8), and is essentially a perspective 

projection of the globe onto a plane from an infinite 

distance (orthogonally). It is commonly used for pictorial 

views of the Earth as if seen from space. 

 

Gnomonic 

 

 
 

Figure 9.10. The Gnomonic projection, which maps great 

circles to straight lines. 
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The Gnomonic projection is neither conformal nor equal 

area. It is a perspective azimuthal projection with the 

point of projection at the centre of the Earth, which is 

the source of the name (i.e., the centre of the Earth 

where the mythical gnomes live). It was developed by 

the Greek Thales, possibly around 580 B.C. All great 

circles on the projection, including all meridians and the 

Equator, are shown as straight lines, a property unique 

to this projection (Figure 9.10). 

 

The graticule appearance changes with the aspect, as 

with other azimuthal projections. Meridians are equally 

spaced straight lines intersecting at the pole with true 

angles between them in the polar aspect. Parallels are 

unequally spaced circles centred on the pole as a point, 

and the spacing of the parallels increases from the pole. 

The projection only can show less than a hemisphere. 

Scale increases rapidly with distance from the centre. Its 

usage results from the special feature of representing 

great circles as straight lines, and it thus assists 

navigators and aviators in determining the shortest 

courses. 

 

Azimuthal Equidistant 

 

In this polar aspect projection, meridians are equally 

spaced straight lines intersecting at the central pole. 

Angles between them are the true angles. Parallels are 

equally spaced circles, centred at the pole, which is a 

point. The entire Earth can be shown, but the opposite 

pole is a bounding circle having a radius twice that of the 

Equator. In its equatorial aspect, meridians are complex 

curves, equally spaced along the Equator and 

intersecting at each pole. Parallels are complex curves 

concave toward the nearest pole and equally spaced 

along the central meridian and the meridian 90° from 

the central meridian. The scale is true along any straight 

line radiating from the centre of projection. It increases 

in a direction perpendicular to the radius as the distance 

from the centre increases. Distortion is moderate for one 

hemisphere but becomes extreme for a map of the 

entire Earth. The distance between any two points on a 

straight line passing through the centre of projection is 

shown at true scale; this feature is especially useful if 

one point is the centre. 

 

This projection is commonly used in the polar aspect for 

maps of Polar Regions, the Northern and Southern 

Hemispheres, and the "aviation‐age" Earth. The oblique 

aspect is frequently used for world maps centred on 

important cities and occasionally for maps of continents. 

The Azimuthal Equidistant projection was recognized by 

the UN and used on the UN's flag (Figure 9.11). 

 

 
Figure 9.11. The azimuthal equidistant projection for 

preserving distances on the UN's flag. 

 

Winkel Tripel 

The Winkel Tripel projection is neither conformal nor 

equal area. It was presented by Oswald Winkel of 

Germany in 1921. 

 

 
 

Figure 9.12. Winkel Tripel projection. 

 

 

The projection was obtained by averaging coordinates of 

the Equidistant Cylindrical and Aitoff projections. Winkel 

applied the name "Tripel," normally meaning triple, 

because the Aitoff projection is an equatorial aspect of 

one hemisphere of the Azimuthal Equidistant projection, 

on which horizontal coordinates have been doubled and 

meridians have been given twice their original 

longitudes. 

 

The central meridian is straight. Other meridians are 

curved, equally spaced along the Equator and concave 

toward the central meridian. 

 

The Equator and the poles are straight. Other parallels 

are curved, equally spaced along the central meridian 

and concave toward the nearest pole. Poles are straight 

lines about 0.4 as long as the Equator, depending on the 

latitude of the standard parallels. Scale is true along the 

central meridian and constant along the Equator. 

Distortion is moderate except near outer meridians in 

Polar Regions. The Winkel Tripel is used for whole‐world 

maps (Figure 9.12). 
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9.7 Modern Approaches to Map Projections 
 

9.7.1 Web Mercator 
 

Many major online street mapping services (Bing Maps, 

OpenStreetMap, Google Maps, MapQuest, Yahoo Maps, 

and others) use a variant of the Mercator projection for 

their map images. Despite its obvious scale variation at 

small scales, the projection is well suited as an 

interactive world map that can be zoomed into 

seamlessly to large‐scale (local) maps, where there is 

relatively little distortion due to the variant projection's 

near‐conformality. 

 

The scale factor at a point on a conformal map 

projection (such as the spherical Mercator or the 

ellipsoidal Mercator) is uniform in all directions. This is 

not true on a Web Mercator. Let us denote with m the 

scale factor in the N/S meridian direction and with n the 

scale factor in the E/W parallel direction. Then m = n 

because the scale factor at a point is the same in all 

directions on the spherical Mercator projection. In other 

words, the spherical Mercator is conformal. 

 

The equations for the ellipsoidal Mercator are a little 

more complicated, especially in Northing. The 

parameters a (semi-major axis) and e (eccentricity) are 

given for the selected ellipsoid. Again m = n because the 

scale factor at a point is the same in all directions on the 

ellipsoidal Mercator projection. In other words, the 

ellipsoidal Mercator is conformal. 

 

Web Mercator is the mapping of WGS84 datum (i.e., 

ellipsoidal) latitude/longitude into Easting/Northing 

using spherical Mercator equations (where R = a). This 

projection was popularized by Google in Google Maps 

(not Google Earth). The reference ellipsoid is always 

WGS84, and the spherical radius R is equal to the semi-

major axis of the WGS84 ellipsoid a. That's "Web 

Mercator." 

 

The scale factor at a point is now different for every 

direction. It is a function of the radii of curvature in the 

meridian and the prime vertical and the direction alpha. 

For the Web Mercator, m and n are not equal. Thus, the 

Web Mercator is not a conformal projection. 

 

If somebody uses the Web Mercator for printing out 

directions to a new restaurant across town or for 

visualization on his/her computer screen or for other 

purposes on the web, there will be no problem. But the 

Web Mercator is a projection that has jumped from one 

domain of use (the web) to another domain of use (GIS) 

where it is leading another life. Witnesses are the EPSG, 

Esri and FME codes for the Web Mercator. Surveyors and 

GIS professionals need to know that the Web Mercator is 

not conformal. If distance computations on the Web 

Mercator are done simply (as they can be done on a 

conformal projection), they will be wrong. If done 

correctly, they will be laborious. 

 

For an area the size of the NW quadrisphere (North 

America), the differences appear slight. It turns out that 

the Eastings are identical. The differences are in the 

Northings. There is no Northing difference at the 

Equator, but by 70 degrees North, the difference is 40 

km. This NS stretching in the Web Mercator is the reason 

for its non-conformality. 

 

Mercator projections are useful for navigation because 

rhumb lines are straight. These are lines of constant true 

heading that navigators used to sail before GPS. So, we 

have to have in mind that straight lines on a Web 

Mercator are not rhumb lines. 

 

To summarize about the Web Mercator: 

 The Web Mercator is cylindrical; 

 Its meridians are equally spaced straight lines; 

 Its parallels are unequally spaced straight lines 

but in a different way than a conformal 

Mercator; 

 Its loxodromes (rhumb lines) are not straight 

lines; 

 It is not perspective; 

 Its poles are at infinity and 

 It was not presented by Mercator in 1569, but 

by Google recently. 

 It is not conformal. 

 

9.7.2 Map Projection Transitions 
 

Map Projection Transitions is an example of multiple 

applications offered by Jason Davies. The web page 

(http://www.jasondavies.com/maps/transition) presents 

a world map with graticule and country borders in the 

oblique Aitoff projection with the South Pole. The map is 

not static, but animated. The South Pole moves toward 

the bottom and Earth rotates around its poles. The 

animation lasts five seconds, after which the projection 

changes and movement continues for five seconds, after 

which the projection changes again. Names of 

projections appear in a separate window. There are a 

total of 56 projections. The South Pole eventually 

becomes invisible and the North Pole appears at the top. 

Various parts of Earth appear in the centre of the map by 

rotating around the poles (Figure 9.13). 

 

By clicking Pause, animation stops and it is possible to 

select another projection. By left‐clicking, it is possible to 

http://www.jasondavies.com/maps/transition)
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Figure 9.13. From the Map Projection Transitions application (http://www.jasondavies.com/maps/transition) 

 move the picture around and select projection aspect—

normal, transversal or any of numerous oblique 

projections. Differences between two projections can be 

seen clearly in such a way. For example, one is able to 

select the Ginzburg VI projection and its normal aspect 

by moving the mouse. If one wants to see how that 

projection's graticule is different from the similar Winkel 

Tripel projection, it can be done by clicking on the 

Winkel Tripel projection on the drop‐down menu. The 

picture on the screen is going to change to the Winkel 

projection and differences are going to be clear. 

 

If one clicks on Maps, there is a series of new interesting 

applications about interrupted maps, butterfly-shaped 

maps, retro-azimuthal projections and other projections. 

It is possible to use the mouse to move pictures in many 

of those applications. For example, by selecting the 

interrupted sinusoidal projection, a world map in three 

segments is going to appear. The mouse can be used to 

move parts of Earth from one segment to another, and 

the slider at the bottom of the screen can be used to 

change the number of segments from an uninterrupted 

world map to a representation in 24 segments. 

 

A similar option is available for the Berghaus (Snyder and 

Voxland, 1989) star projection. The application Azimuth 

and Distance from London enables using the mouse to 

obtain distances and azimuths from London to any point 

on Earth in world maps in oblique equidistant cylindrical 

and oblique equidistant azimuthal projection. If an 

application's accompanying text mentions a projection, 

there is a link to Wikipedia where there is detailed 

information on the projection. 

 

9.7.3 Research on New Map Projections 
 

In 2007, inspired by Robinson's method, B. Jenny, T. 

Patterson and L. Hurni produced the Flex Projector 

interactive program, which enables the user to create 

new world map projections with ease. It supports the 

normal aspect of cylindrical projections. The program is 

free and open source and works under Linux, Mac OS X 

and Windows. By executing the program, a world map in 

the Robinson projection appears on the screen (Figure 

9.14). The right side of the screen includes sliders for 

changing lengths of parallels. Clicking the Distance 

button brings up sliders for changing distances of 

parallels from the Equator. Parallel curvatures (Bending) 

and distances between meridians (Meridians) can also 

be changed. The Linked Sliders option enables the user 

to move each slider separately or several at once. The 

next option Move is used to choose the shape of the 

curve along which the sliders are moved. The ratio 

between the central meridian and the Equator can be 

changed with the Proportions (Height/Width) slider. 

Instead of modifying the Robinson projection, one can 

start from any of a number of provided projections from 

the three groups mentioned. If the result is unsatisfying, 

one can use the option Reset Projection to go back to 

the initial projection. The option can be found in the 

upper right corner of the screen. 

 

Clicking Display opens up additional options. The length 

of the central meridian can be changed, graticule density 

can be chosen, distortion ellipses can be drawn in nodes 

of the graticule, and area and maximum angle distortion 

isograms can be drawn. The background of newly 

created projection can include the graticule and 

continent outlines in any activated projection (Show 

Second Projection). The bottom left corner of the screen 

includes numerical indicators of the summary length, 

area and angle distortions for all activated projections 

and the projection just created (Figure 9.14). 

 

 
 

Figure 9.14. Interface of the Flex Projector program. 
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Flex Projector can import and export vector and raster 

data in several formats. The program is recommended to 

everyone wanting to try creating a new world map 

projection, and it can also be applied in teaching map 

projections. 

 

The techniques for combining two source projections to 

create a new projection allow for the creation of a large 

variety of projections. The mentioned techniques can 

also be extended. For example, the Geocart software by 

Mapthematics can blend projection parameters, such as 

the latitude of standard parallels, between two source 

projections. Alternatively, more than two projections can 

be combined to form a new one. The extreme case 

would be an infinite number of differently 

parameterized projections, which is the concept behind 

polyconic and poly-cylindric projections. There are 

alternative methods for creating a new projection from 

scratch, deriving it from existing ones or adjusting 

projection parameters to create a new one. Some of 

these techniques are used in the adaptive composite 

projections for web maps, a new field of map projection 

research. The goal of this research is to develop an 

alternative to the Web Mercator projection for 

small‐scale web maps, where maps automatically use an 

optimum projection depending on the map scale, the 

map's height‐to‐width ratio, and the central latitude of 

the displayed area. 

 

9.8 Suggested Projections 
 

The reason we have so many map projections is because 

none serves every need. The selection of an appropriate 

map projection for a given application depends on a 

variety of factors, including the purpose of the map, the 

type of data to be projected, the region of the world to 

be projected and scale of the final map. Advice on 

selection is available from a variety of print and web 

sources (see Further Reading section). In GIS, large‐scale 

datasets (small area extent) commonly are projected 

with a conformal projection to preserve angles. For such 

applications, area distortion is so small over the 

geographic extent that it is negligible and an area 

preserving projection is not needed. Commonly, 

large‐scale data files are used in GIS applications of 

limited geographic extent (e.g., a watershed, a county or 

a state). The two most commonly used projections for 

these scales are the Lambert Conformal Conic and the 

Transverse Mercator, which are the basis of the UTM 

and most of the USA State Plane coordinate systems. For 

general‐purpose world maps, our recommendation is 

not using any cylindrical map projection but some of 

pseudo-cylindrical (e.g., Robinson or a compromise 

projection like the Winkel Tripel). 

 

9.9 Conclusions 
 

Map projections and coordinate transformations are the 

basis of achieving a common frame of reference for 

geographic information. The requirement of a common 

ellipsoid, datum, map projection, and finally plane 

coordinate systems make it possible to use plane 

geometry for all types of spatial overlay and analysis. 

Projection of geographic data from the ellipsoidal Earth 

to a plane coordinate system always results in distortion 

in area, shape, distance, and other properties. With 

appropriate selection of a projection, the user can 

preserve desired characteristics at the expense of others. 

In this chapter we have briefly examined basic concepts 

of the basis of coordinate systems and map projections. 

For a more in‐depth treatment, the reader is referred to 

the texts and sources referenced in the Further Reading 

section. 

 

9.10 Further Reading 
 

Further references and an exercise with questions and 

answers are given in Chapter 18. 
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